Introducción a las funciones de variable compleja
Portada
Citas bibliográficas
Código QR
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen
El libro “Introducción a las funciones de variable compleja” es una invitación al estudio del análisis complejo, que en sus raíces más básicas corresponde al cálculo diferencial e integral de funciones de una sola variable compleja. Más allá de su división en capítulos y secciones, este texto aborda en orden tres grandes temas. En el primer momento, que abarca los capítulos 1 y 2, se estudia de manera amplia y detallada el sistema de los números complejos. Partiendo de la definición elemental de los números complejos y sus propiedades algebraicas básicas, luego se pasa por diferentes representaciones geométricas y se desemboca en la métrica, la topología y las nociones de convergencia en el plano complejo. El segundo tema importante, que corresponde al capítulo 3, comprende las funciones de variable compleja. En esta parte se procura explicar el comportamiento de las funciones básicas que se utilizan en el análisis complejo, no solo las polinómicas y racionales sino también algunas funciones trascendentes, y se detalla su relación con las funciones reales correspondientes. En cada caso, se elabora una aproximación a la conducta geométrica de la función. La tercera parte del texto, que incluye los capítulos 4 y 5, es de manera esencial la introducción al cálculo con funciones de variable compleja. Como es tradición en matemáticas, este cálculo se desarrolla en tres pasos que son los límites, las derivadas y las integrales. El énfasis se centra, por supuesto, en aquellas particularidades en las cuales el análisis complejo difiere del real. Entre ellas se pueden mencionar las condiciones de Cauchy-Riemann para la diferenciabilidad, las funciones complejas holomorfas y las funciones reales armónicas, el teorema integral de Cauchy con sus diversas consecuencias, la fórmula integral de Cauchy, la existencia de todas las derivadas de una función holomorfa, y la fórmula integral general de Cauchy.