ACTIVIDAD BIOLÓGICA DEL VENENO DE DOS ESPECIES DE SERPIENTES OPISTOGLIFAS DEL DEPARTAMENTO DEL TOLIMA

KRISTIAN ALBERTO TORRES BONILLA

Trabajo de grado presentado como requisito parcial para optar al título de Biólogo

Director

MANUEL HERNANDO BERNAL BAUTISTA. MSc. PhD.

UNIVERSIDAD DEL TOLIMA
FACULTAD DE CIENCIAS
PROGRAMA DE BIOLOGÍA
IBAGUÉ – TOLIMA
2016

FACULTAD DE CIENCIAS PROGRAMA DE BIOLOGÍA

ACTA DE SUSTENTACIÓN DE TRABAJO DE GRADO

cled Tol	Knishan	Alberto	Tans	Bonilla		
DIRECTOR	Manel	H Be	nd.B			
JURAIXOS:	walle Litan	Munilo Frances				
CALIFICAC	10N: 6.0	9):				
X_OBSERVA	APROBADO			R	EPROBA	DO
FIRMAS				DD.	1	_
JURADO V	<i>70</i> _		JU	RADO 2	y-	
Sh	17	_	(I	×-	J.
Director del	dabajo		Di	ector del	rodgema	
Ciudad y fee	ha: Ilogy	ė 15-	June :	2016.	600	

"A mis padres	por todas las enseñanzas y apoyo que me brindaron y a m novia por su cariño y compañía durante todo el proceso"

AGRADECIMIENTOS

El autor de esta investigación desea expresar sus más sinceros agradecimientos a las siguientes personas:

Al profesor **Manuel Hernando Bernal B.**, de la Universidad del Tolima, por su dirección y asesoría durante el proceso investigativo.

Al estudiante tesista **James Herrán Medina** por su ayuda y asistencia técnica durante la investigación.

Al Laboratorio de Ultra-estructura celular, acción de venenos en sistemas biológicos de la Universidad Estadual de Campinas, por su apoyo en el desarrollo de este trabajo.

Al **Departamento de Farmacología** de la Universidad Estadual de Campinas, por su apoyo en el desarrollo de este trabajo.

Al **Grupo de Investigación en Herpetología, Eco-Fisiología & Etología** de la Universidad del Tolima, por su apoyo en el desarrollo de este trabajo.

A la **Oficina de Investigaciones y Desarrollo Científico** de la Universidad del Tolima, por la financiación de esta investigación, mediante el proyecto: 1230213.

A la Corporación Autónoma Regional del Tolima "CORTOLIMA", por expedir el permiso de investigación científica en diversidad biológica (Resolución N° 2886 de 2011) necesario para el desarrollo de este trabajo.

CONTENIDO

	Pág.
INTRODUCCIÓN	14
1. PLANTEAMIENTO DEL PROBLEMA	15
2.OBJETIVOS	16
2.1OBJETIVO GENERAL	16
2.2OBJETIVOSESPECIFICOS	16
3.ESTADODELARTE	17
3.1FAMILIACOLUBRIDAE	17
3.2GLÁNDULA DE DUVERNOY	17
3.3 VENENO Y TOXINAS	20
3.3.1 Neurotoxicidad	21
3.3.2 Miotoxicidad	22
3.3.3 Actividad enzimática	22
3.4 SINAPSIS NEUROMUSCULAR	23
3.4.1 Potencial de membrana en reposo	25
4. METODOLOGÍA	26
4.1 ESPECIES DE ESTUDIO	26
4.1.1 Leptodeira annulata	26
4.1.2 Erythrolamprus bizona	26
4.2 ZONA DE COLECTA	27
4.2.1 Centro Universitario Regional del Norte (CURDN)	27
4.3 MÉTODOS DE EXTRACCIÓN DEL VENENO	28
4.3.1 Extracción con microcapilares	28

4.4 DETERMINACIÓN DE LA TOXICIDAD DEL VENENO	29
4.4.1 Dosis letal media (DL ₅₀) de los venenos en ratones	29
4.5 ACTIVIDADES ENZIMÁTICAS	29
4.5.1 Actividad Esterásica	29
4.5.2 Actividad Proteolítica	30
4.5.3 Actividad Fosfolipasa A ₂	30
4.6 ACTIVIDAD NEUROMUSCULAR	30
4.6.1 Efectos neuromusculares en Biventer cervicis de pollo	30
4.6.2 Efectos neuromusculares en hemidiafragma de ratón	31
4.7 ANÁLISIS MORFOLÓGICOS	34
4.7.1 Histología de músculo esquelético de pollo y ratón	34
4.8 ANÁLISIS ESTADÍSTICO	35
5. RESULTADOS Y DISCUSIÓN	36
5.1 MÉTODOS DE EXTRACCIÓN	36
5.1.1 Extracción con microcapilares	36
5.2 TOXICIDAD DE LOS VENENOS	37
5.2.1 Dosis letal media (DL ₅₀) en ratones	37
5.3 ACTIVIDADES ENZIMÁTICAS	38
5.3.1 Actividad Esterásica	38
5.3.2 Actividad Proteolítica	38
5.3.3 Actividad Fosfolipasa A ₂	38
5.4 ACTIVIDAD NEUROMUSCULAR	39
5.4.1 Efectos neuromusculares en Biventer cervicis de pollo	39
5.4.2 Efectos neuromusculares en hemidiafragma de ratón	42
5.5 ANÁLISIS MORFOLÓGICOS	44
5.5.1 Histología de músculo esquelético de pollo y ratón	44
6. CONCLUSIONES	49

RECOMENDACIONES	50
REFERENCIAS	51

LISTA DE TABLAS

Tabla	1.	Actividades	enzimáticas	del	veneno	de	Leptodeira	annulata	У
Erythro	olar	nprus bizona	a					4	6
-									
Tabla	2. F	Registro del	potencial de m	nemb	rana en	repo	so en prepa	raciones d	е
múscu	lo d	le ratón exni	Jestas al vene	no de	l annu	ılata	 (30 ua/ml)	5	4

LISTA DE FIGURAS

Figura 1. Anatomía de la glándula de Duvernoy. Tomado y modificado de
Kardong, (2002)23
Figura 2. (A) Glándula de Duvernoy (basada en <i>B. irregularis</i>), localizada en la región temporal, desemboca en una serie de tejidos que rodean los dientes maxilares. (B) Ampliación de la posición del conducto principal (Md)
Desembocando dentro de la cavidad del epitelio oral (Pk) Alrededor de la base
de los dientes maxilares posteriores (F); epidermis (Ep) y canal de secreción (G). Tomado y modificado de Kardong, (2002)
Figura 3. Especies de estudio. A) Leptodeira annulata; B) Erythrolamprus bizona
Figura 4. Ubicación del Centro Universitario Regional del Norte (CURDN).
Sitio de colecta de los ejemplares de L. annulata y E. bizona. Tomado de
https://es.wikipedia.org/wiki/Armero_Guayabal35
Figura 5. Extracción del veneno con microcapilares36
Figura 6. Disección del músculo Biventer cervicis de pollo39
Figura 7. Disección del nervio frénico y hemidiafragma de ratón40
Figura 8. Monitoreo y registro de las contracciones musculares41
Figura 9. Proceso de obtención del potencial de membrana en reposo de músculo de ratón.

Figura 15. Potencial de membrana en reposo y actividad neuromuscular del

veneno de L. annulata en preparaciones de nervio frénico-hemidiafragma de

ratón. A. Medición del potencial de membrana en reposo en preparaciones

expuestas al veneno de L. annulata (30 µg/ml). B. Bloqueo neuromuscular
inducido por el veneno (30 µg/ml). Los puntos en A y B en las figuras
representan la media ± error (n=4); *p<0.05 comparada a los valores basales
(en A) y el control (en B); (#) en A indica que la despolarización inducida por
Carbacol (Cch, 68.5 mM) fue estadísticamente diferente a t ₁₂₀ min; (w) - post-
lavado53
Figura 16. Alteraciones histológicas del músculo inducidas por el veneno de
L. annulata en preparaciones de Biventer cervicis de pollo. E- fibras con
edema, V- fibras vacuolizadas, N- fibras con necrosis, D- lesiones delta.
Tinción con Hematoxilina-Eosina, (400x)56
Figura 17. Alteraciones histológicas del músculo inducidas por el veneno de
E. bizona en preparaciones de Biventer cervicis de pollo. E- fibras con edema,
N- fibras con necrosis, D- lesiones delta. Tinción con Hematoxilina-Eosina,
(400x)57
Figura 18. Morfología del músculo (hemidiafragma de ratón) incubado con el
veneno de Leptodeira annulata (30 μg/ml) durante 120 min. E- fibras con
edema, N- fibras necróticas, D- lesiones delta. Tinción con Hematoxilina-
Eosina. (400x)58