PERFIL MOLECULAR Y EPIDEMIOLOGÍA DEL CARCINOMA COLORRECTAL ESPORÁDICO EN COLOMBIA

Mabel Elena Bohórquez Lozano
Ángel Alexandro Criollo Rayo
Anggi Margarita Vélez Bohórquez
Luis Guillermo Carvajal Carmona

UNIVERSIDAD DEL TOLIMA
2019
Contenido

Dedicatoria ...9

Agradecimientos ... 11

Prólogo .. 13

Resumen .. 15

Introducción .. 21

Capítulo 1
Generalidades del carcinoma colorrectal (CCR)
(MIM: 114500)... 25

1.1. Anatomía del intestino grueso – colon y recto ..27
1.2. Histopatología del carcinoma colorrectal (CCR) ..29
1.3. Epidemiología del cáncer gastrointestinal ..31
1.4. Estadificación del cáncer gastrointestinal ...34
1.5. Herencia, riesgo del carcinoma colorrectal (CCR)35
1.6. Patología molecular del carcinoma colorrectal ...38
 1.6.1. Biomarcadores moleculares del carcinoma colorrectal (CCR).38
 1.6.2. Rutas carcinogénicas en el carcinoma colorrectal40
 1.6.3. Subtipos moleculares del carcinoma colorrectal (CCR)45
Capítulo 2
Materiales y métodos .. 49

2.1. Aprobaciones éticas.. 51
2.2. Muestra.. 51
 2.2.1. Selección de pacientes.. 51
 2.2.2. Muestras de sangre periférica... 52
 2.2.3. Muestras del tejido tumoral y normal... 52
2.3. Extracción y cualificación de ADN... 53
 2.3.1. Sangre periférica... 53
 2.3.2. Tejido tumoral y tejido normal.. 55
2.4. Inestabilidad microsatelital (MSI).. 57
 2.4.1. Evaluación de loci y procedimiento de amplificación................................. 57
 2.4.2. Detección por electroforesis capilar... 59
 2.4.3. Análisis de los datos... 59
2.5. Inmunohistoquímica – IHC – MLH1 ... 60
 2.5.1. Inmunotinción... 60
2.6. Amplificación y secuenciación de genes por PCR convencional............................... 62
2.7. Amplificación y secuenciación de genes para el sistema ion torrent.......................... 69
2.8. Análisis estadístico... 70

Capítulo 3
Resultados.. 71

3.1. Características de la muestra ... 73
 3.1.1. Región, ciudad de procedencia ... 73
 3.1.2. Género y edad ... 74
 3.1.3. Aspectos clínico-patológicos... 76
 3.1.4. Antecedentes familiares de cáncer... 85
 3.1.5. Inmunohistoquímica para MLH1 - IHC... 88
3.2. Perfil molecular CCR somático.. 90
 3.2.1. Inestabilidad microsatelital – MSI ... 90
 3.2.2. Asociación resultados de las pruebas de MSI e IHC................................. 91
3.2.3. Análisis molecular en pacientes CCR - MSS.................................94
3.2.4. Análisis molecular en pacientes CCR – MSI-H - MSI-L..............117
3.2.5. Análisis molecular en casos CCR – Tejido Fresco –
Ion Torrent ..121

Capítulo 4
Discusión..129

4.1. Aspectos clínico-patológicos...131
 4.1.1. Género ..131
 4.1.2. Edad ..132
 4.1.3. Localización ..134
 4.1.4. Correlación entre tamaño tumoral y el estado ganglionar135
 4.1.5. Estado TNM ..136
4.2. Correlación entre características clínicas, MSI – IHC - BRAF137
4.3. Perfil mutacional del CCR esporádico...141
 4.3.1. Gen TP53 ...141
 4.3.2. Gen KRAS ..143
 4.3.3. Gen APC ..146
 4.3.4. Análisis de genes – metodología Ion Torrent148

Conclusiones..151

Perspectivas y recomendaciones..155

Referencias bibliográficas...159

Anexos ...197
Listado de figuras

Figura 1. Estructura macroscópica del colon: Colon in situ28
Figura 2. Estructura microscópica del colon ..29
Figura 3. CCR: Distribución por Ciudad ..74
Figura 4. CCR: Distribución por género y ciudad ...74
Figura 5. CCR: Distribución por grupo etario ..75
Figura 6. CCR: Distribución anatómica detallada ...76
Figura 7. CCR: Correspondencia simple: Edad – tipo de tumor79
Figura 8. CCR: Correspondencia simple: Edad – localización del tumor79
Figura 9. CCR: Distribución Tamaño del tumor – Rango de edad82
Figura 10. CCR: Reporte de ganglios linfáticos examinados83
Figura 11. CCR: Evaluación inmunohistoquímica para MLH189
Figura 12. CCR: Electroferogramas análisis MSI ..90
Figura 13. CCR: Evaluación inestabilidad microsatelital (MSI)91
Figura 14. CCR: Panel molecular CCR, mutaciones probadas – casos – tejido FFPE ...95
Figura 15. CCR: Análisis componentes principales genes tejido FFPE97
Figura 16. CCR: perfil mutacional TP53, KRAS, APC103
Figura 17. CCR: Comparación frecuencia de las mutaciones en la base de datos COSMIC con la cohorte de este estudio ...113
Figura 18. CCR: Árbol oncogénico, modelo basado en el algoritmo “oncotree en R” ...117
Figura 19. CCR n= 8 –Tejido fresco – mutaciones por cromosoma127
Listado de tablas

Tabla 1. Incidencia y mortalidad de cáncer en Colombia, ambos sexos (5 primeras causas) ...33
Tabla 2. Estadificación del Carcinoma Colorrectal ...34
Tabla 3. Cebadores para la amplificación microsatelites - MSI58
Tabla 4. Condiciones amplificación microsatelites - MSI58
Tabla 5. Microsatélites, panel Bethesda. ..60
Tabla 6. Cebadores y secuencias para amplificación de APC, KRAS, BRAF y TP53 ...63
Tabla 7. Protocolo para amplificación de genes APC, KRAS, BRAF y TP53 ...65
Tabla 8. Distribución por región pacientes CCR...73
Tabla 9. CCR: Parámetros clínico-patológicos ..75
Tabla 10. Análisis descriptivo, variables clínicas ...77
Tabla 11. CCR: Pacientes con resección colónica..80
Tabla 12. Proporciones: Edad – Tumor (tipo, localización, tamaño).........84
Tabla 13. Pacientes con antecedentes familiares de cáncer85
Tabla 14. Comparación del riesgo, de acuerdo con el género, la edad y la presencia de adenomas ...86
Tabla 15. Comparaciones características clínico-patológicas – edad de inicio ...87
Tabla 16. Análisis multivariado características clínico-patológicas88
Tabla 17. Comparaciones MSI, IHC, características clínico-patológicas ...90
Tabla 18. Análisis multivariado MSI – IHC características clínico-patológicas ...92
Dedicatoria

A nuestras familias, que nos dieron la fuerza más grande: voluntad.

A los integrantes del grupo de Citogenética, Filogenia y Evolución de Poblaciones, por su incansable acompañamiento, disciplina y generosidad.

A María Magdalena Echevery de Polanco, por sus enseñanzas.
Agradecimientos

A todas las instituciones que apoyaron el desarrollo de este trabajo de investigación, a saber:

- Universidad del Tolima, por su apoyo académico y económico.
- Grupo de investigación Citogenética, Filogenia y Evolución de Poblaciones, cuyos investigadores colaboraron en cada uno de los apartes de este trabajo.
- Laboratorio de Genética del Cáncer del doctor Luis Carvajal, en la Universidad de Davis, California, en donde se realizaron los procedimientos de secuenciación y análisis bioinformáticos.
- Grupo de Genética Molecular del Wellcome Trust Centre for Human Genetics, de la Universidad de Oxford-Inglaterra, por su apoyo en el desarrollo de algunas de las pruebas moleculares y el análisis bioinformático.
- E.P.S. e I.P.S., y Departamentos y Laboratorios de Patología de la Universidad Nacional, del Hospital Pablo Tobón Uribe, del Hospital Hernando Moncaleano Perdomo y del Hospital Federico Lleras Acosta, que colaboraron intensamente con la consecución de muestras, y con los procesos histopatológicos e inmunohistoquímicos.

A los médicos patólogos, en quienes siempre encontramos apoyo emocional y científico.
A los profesores y colegas docentes de la Universidad del Tolima, por sus consejos, especialmente al profesor Carlos Alfonso Quimbayo.

A los más de mil pacientes con cáncer de colón y recto, que aceptaron participar en el estudio, aun a sabiendas de que los datos obtenidos no los iban a beneficiar de manera directa.

Finalmente, a nuestras familias, por su comprensión y amor.
Prólogo

Este libro es el resultado del trabajo de investigación CARCINOMA COLORRECTAL (CCR) ESPORÁDICO Y FAMILIAR EN COLOMBIA, producto de la tesis de doctorado en Ciencias Biomédicas de Mabel Elena Bohórquez Lozano, dirigida por María Magdalena Echevery de Polanco y Luis Guillermo Carvajal Carmona. El proyecto nació en el año 2005, en el seno del grupo de Citogenética, Filogenia y Evolución de Poblaciones -Categoría A1 COLCIENCIAS, 2017-, como parte del programa de investigación: Análisis genético poblacional de enfermedades humanas, el cual se enfoca, principalmente, en la genética básica de distintos tipos de cáncer y en el mapeo genético de diferentes poblaciones indígenas del territorio nacional. Como fruto de 13 años de trabajo, en el campo de las poblaciones humanas, a la fecha se han finalizado 17 proyectos de investigación y están en proceso de desarrollo otros siete. Se cuenta con 25 publicaciones, en su mayoría de carácter internacional, y se ha logrado muestrear 8.339 individuos, entre casos y controles poblacionales, familiares e indígenas, lo cual ha generado una importante colección de muestras de sangre y tumor, actualmente bajo custodia del grupo. En alianza con el Instituto Nacional de Cancerología, (INC) y con la Universidad de California Davis, en la actualidad se avanza en tres convenios nacionales de investigación y dos internacionales, habiendo finalizado otros tres con el Cancer Research UK, la Unión Europea-Universidad de Oxford y Glaxo Smith Kline Oncology. Los resultados de este proyecto fueron presentados en el XIII Congreso
Colombiano de Genética Humana y VII Congreso Internacional, en la ciudad de Cali, en 2014, donde fue galardonado con el primer puesto, en la modalidad póster; en el XL Congreso Colombiano de Patología, en el que obtuvo el segundo puesto, también en la modalidad de póster. La tesis de doctorado correspondiente a este trabajo fue galardonada con calificación 5.0 -Laureada. Además, se ha socializado en diferentes seminarios y congresos, entre los que se cuentan: Anual de American Association for Cancer Research, San Diego, USA, en 2014; 6th Biennial of The International Society for Gastrointestinal Hereditary Tumours – InSIGHT, Brasil, 2015; y 7th Biennial Meeting InSIGHT, Italia, en 2017 (anexo 3).
Resumen

En este trabajo se planteó describir las principales características clínico-patológicas y algunos de los fenotipos moleculares del carcinoma colorrectal (CCR), enfermedad que presenta altas tasas de incidencia y mortalidad en Colombia.

Métodos

Se analizó una muestra de 1.278 pacientes con CCR, procedentes de diferentes regiones del país, comparando variables clínico-patológicas como edad, género, tipo histológico, resección quirúrgica, compromiso ganglionar. Para los análisis de expresión de los genes MMR (Mismatch Repair) y hMLH1 se utilizaron métodos inmunohistoquímicos (IHC). Para evaluar inestabilidad microsatelital (MSI) y buscar mutaciones somáticas en puntos calientes de los genes APC, KRAS y TP53 se utilizó ADN de tejido tumoral y normal, incluido en parafina, mediante PCR convencional y secuenciación de siguiente generación, NGS, con la metodología Ion Torrent.

Resultados

Los resultados muestran que el promedio de edad de los pacientes colombianos con CCR es de 57,4 años, aproximadamente, 10 años menor que en los países desarrollados; la enfermedad es más frecuente en el
género femenino (53,2%). La frecuencia de los pacientes menores de 50 años (26,5%) es mayor a la esperada. El CCR, en estos casos, se asoció a los tipos histológicos agresivos -carcinoma mucinoso y carcinoma en anillo de sello- p=<0,000, los cuales, a su vez, resultaron asociados a inestabilidad microsatelital (MSI-H). La localización más frecuente fue en el recto (31,1%), p=0,002, y el diagnóstico se produjo en estados avanzados de la enfermedad T3-T4 (75,1%) p=0,022. El tipo histológico más frecuente es el adenocarcinoma.

La sensibilidad del análisis inmunohistoquímico de MLH1 para la detección de MSI+ fue de 71% (CI: 49 - 87). El análisis por IHC-MLH1 en 575 casos mostró pérdida de la expresión en el 7% de los pacientes. Las pruebas de MSI (inestabilidad microsatelital) se realizaron en 451 casos de CCR; el 23% presentaron alta inestabilidad microsatelital (MSI-H).

El panel molecular para genes conocidos, relacionados con CCR esporádico, que esperamos se convierta en una herramienta para el desarrollo de nuevas estrategias diagnósticas y terapéuticas, revela hasta el momento -además de algunas variantes nuevas con potencial patogénico-, los siguientes porcentajes de mutaciones: KRAS 23,9%, TP53 63,4% y APC 40,3%. Las variantes más frecuentemente encontradas por tipo de gen son: TP53 R175H (26%), KRAS G12D (11%), APC K1363N (14%). El 25% de los pacientes son triple negativos para las mutaciones en estos genes, lo que obliga a investigar otras rutas en la carcinogénesis del CCR. El 66% de las mutaciones encontradas por el método NGS resultaron ser no sinónimas. El gen con mayor frecuencia de mutaciones patogénicas por NGS fue el APC (12%).

Conclusiones

El CCR en Colombia se presenta en promedio 10 años antes, comparado con los países desarrollados.

Es necesario establecer políticas públicas de tamizaje para CCR en la población menor de 50 años, realizar el tamizaje con inmunohistoquímica para MLH1 y la determinación de inestabilidad microsatelital, que permiten identificar pacientes en riesgo de ser portadores de mutaciones relacionadas con síndrome de Lynch.
La identificación de variantes génicas nuevas y de las mutaciones con primer reporte para Colombia, en genes relacionados con cáncer colorrectal, permitirá establecer estrategias preventivas para el tamizaje de dichas mutaciones en la población en riesgo.

Palabras clave:

Carcinoma colorrectal, genética, mutaciones.
Summary

This paper describes the main clinical, pathological and some of the molecular phenomena of colorectal carcinoma (CRC), a disease with high rates of incidence and mortality in Colombia.

Methods

A sample of 1278 patients with CRC from different regions of the country was analyzed, comparing clinical and pathological variables such as age, gender, histological type, surgical resection, lymph node involvement. For analysis of gene expression of the MMR (Mismatch Repair) genes hMLH1, immunohistochemical methods (IHC) were used. To evaluate microsatellite instability (MSI) and search for somatic mutations in hot spots of the APC, KRAS and TP53 genes, DNA from tumoral and normal tissue included in paraffin was used by conventional PCR and next generation sequencing "NGS" with the Ion Torrent methodology.

Results

Our research indicates that the average age of Colombian CRC patients is 57.4 years, approximately 10 years younger than in developed countries. The disease is more common in females (53.2%). The frequency of patients younger than 50 years (26.5%) is higher than expected; the CRC in these cases was associated with histological types: aggressive, mucinous carcinoma and singlet ring carcinoma (P= <0.000), which in turn were associated with
microsatellite instability (MSI-H). The most frequent location was in the rectum (31.3%), p=0.002 and the diagnosis occurred in advanced stages of the disease T3-T4 (75.1%) p=0.022. The most common histological type was adenocarcinoma.

The sensitivity of the immunohistochemical analysis of MLH1 for the detection of MSI+ was 71% (CI: 49-87). In 575 cases, the IHC-MLH1 analysis showed loss of expression in 7% of patients. MSI analysis (microsatellite instability) was performed in 451 cases of CRC, with 25% showing high microsatellite instability (MSI-H).

The molecular panel for known genes related to sporadic CRC could become a tool for the development of new diagnostic therapeutic strategies. This panel reveals some new variants with pathogenic potential during the validation phase with the following percentage of mutations: KRAS 23.9%, TP53 63.4% and APC 40.3%. The most frequent variants encountered by gene type were: TP53 R175H (26%), KRAS G12D (11%) and APC K1363N (14%). Approximately 25% of patients were triple negative for mutations in these genes, leading to the investigation of other routes of carcinogenesis in CRC. Non synonymous mutations were found in 66% of the mutations discovered by the NGS method and the gene with more frequency of pathogenic mutations found by this method was APC (12%).

Conclusions

The CRC in Colombia occurs on average 10 years earlier compared to developed countries. It is necessary to establish public policies for CRC screening in the population younger than 50 years old. These screenings should be done with immunohistochemistry for MLH1 and microsatellite instability to identify patients at risk of being carriers of mutations related to Lynch syndrome.

The identification of new gene variants and the mutations reported for the first time in Colombia in sporadic cancer-related genes will allow the establishment of preventive screening for such mutations in the population at risk.

Keywords: Colorectal cancer, genetic, mutations
INTRODUCCIÓN
El cáncer es un síndrome genético causado por la acumulación, a lo largo del tiempo, de mutaciones en el ADN, que producen alteraciones, pérdidas o amplificaciones en genes importantes en la función y en el crecimiento celular, entre los cuales se cuentan los protooncogenes, los supresores tumorales y los reparadores del ADN.

Uno de los principales problemas de los pacientes con carcinoma colorrectal (CCR) en países en vías de desarrollo, como el nuestro, es el diagnóstico tardío en estados III y IV, motivo por el cual no solo se encarece el tratamiento, sino que, además, disminuyen la calidad de vida y las expectativas de sobrevida de los pacientes. Estas condiciones pueden mejorarse ostensiblemente con un diagnóstico temprano (Plan Nacional para el Control del Cáncer 2010), y con un perfil genético del paciente, que permita el seguimiento preventivo de las familias en riesgo y el tratamiento personalizado, con la consecuente disminución de pacientes en estados avanzados de la enfermedad. Con el tamizaje genético derivado de este proyecto se está dando un paso hacia la solución de este problema.

En este trabajo se identificaron las mutaciones somáticas en una muestra de 1.278 casos en los genes APC, KRAS y TP53, usualmente relacionados con el CCR. Se correlacionaron las principales características clínico-patológicas de estos casos con las mutaciones encontradas.
Capítulo 1

GENERALIDADES DEL CARCINOMA COLORRECTAL (CCR) (MIM: 114500)
1.1. Anatomía del intestino grueso – colon y recto

Generalidades: Corresponde a la sexta porción del tubo gastrointestinal, conformado por una estructura tubular de aproximadamente 80 cm de largo. Se destaca una conformación muscular particular. Presenta una capa longitudinal externa que lo caracteriza. Desde la porción proximal se inician tres cintas aplanadas, una en la cara anterior y dos en la posterior; dependiendo de su ubicación topográfica, las cintas varían discretamente. Por la existencia de una capa muscular circular interna se generan haustras o dilataciones en forma de saco, que aumentan su distintiva forma, componentes muy importantes en el momento de tomar decisiones quirúrgica-oncológicas. (N. K. Kim *et al.*, 2016).

El intestino grueso se divide en tres grandes porciones: ascendente, transversa y descendente. La primera presenta una porción dilatada en su extremo inferior denominada ciego; la porción descendente se continúa en una forma sinuosa denominada sigmoides, luego se hace recta y termina en el ano. (Figura 1).
Figura 1. Estructura macroscópica del colon: Colon *in situ*

Fuente: los autores.

Las capas del intestino grueso, de afuera hacia adentro son: la serosa recubierta por el peritoneo visceral, la muscular conformada por fibras longitudinales y circulares, y la mucosa; en ésta no se observan válvulas conniventes, ni vellosidades. Sobre su luz se aprecian los pliegues semilunares.

La anatomía del colon fue descrita hace más de 100 años. No ha tenido cambios significativos, pero sí avances en los abordajes quirúrgico-oncológicos. (Haywood, Molyneux, Mahadevan, Lloyd, & Srinivasaiah, 2016), (Latarjet, 2004; Moore K, 2007).

Desde el punto de vista microscópico, el intestino grueso o colon tiene cuatro capas: la mucosa, presenta glándulas intestinales profundas y rectas. Las células que componen las glándulas son: células madre, enterocitos, células caliciformes principalmente y células M o microplegadas; sin embargo carece de células de Paneth, por lo que la cantidad de bacterias es mucho mayor. Estas células tienen una función determinada en el proceso fisiológico del intestino. (Beilstein, Carriere, Leturque, & Demignot, 2016; Delacour, Salomon, Robine, & Louvard, 2016; Ong, Vega, & Houchen, 2014; Salzman, Underwood, & Bevins, 2007). La estructura y función de los
enterocitos y su posible diferenciación es estudiada desde el punto de vista molecular, con la expresión de diversos marcadores. (Gerbe, Legraverend, & Jay, 2012).

En las otras tres capas del colon, submucosa, muscular y serosa, predominan los vasos sanguíneos y linfáticos, y tejido adiposo; en la zona donde está en contacto directo con otros órganos carece de serosa y solo posee adventicia. (Gartner, 2011; Kierszenbaum, 2008; Ross M, 2012), (Figura 2).

Figura 2. Estructura microscópica del colon.

Fuente: Los autores

1.2. Histopatología del carcinoma colorrectal (CCR)

El CCR se origina en la cripta colónica, constituida por células madre localizadas en la base de la glándula, progenitoras de células que ascienden en la cripta y se diferencian a enterocitos, células caliciformes y células neuroendocrinas, entre otras. (Gerbe *et al.*, 2012). Numerosos autores
han descrito los diferentes mecanismos de señalización y crecimiento involucrados en la cancerización de la cripta colónica. (C. C. Chang, Lin, Wu, Jeng, & Kuo, 2014; Hawthorn, Lan, & Mojica, 2014; Krausova & Korinek, 2014; Lamprecht & Fich, 2015; Patel, Tripathi, Gopalakrishnan, Williams, & Arasaradnam, 2015). Otros han señalado los mecanismos implicados en la pérdida de la regulación de las células epiteliales con la consecuente transformación tumoral. (Bell & Thompson, 2014; Zhu, Gao, Wu, & Qin, 2013). Adicionalmente, se ha investigado la alta tasa mitótica, ya que las células epiteliales de la cripta se reemplazan por completo en un lapso de 2 a 8 días. La tasa de proliferación total por célula epitelial en el colon es de 1 billón a 3 billones por día (Raskov, Pommergaard, Burcharth, & Rosenberg, 2014), y la transformación de las células madres se realiza a una alta concentración de bacterias, presentes en la cripta, con un potencial rol tumorogénico de la microbiota. (Harmsen & de Goffau, 2016; Zeuner, Todaro, Stassi, & De Maria, 2014).

Las lesiones precursoras desde el punto de vista histológico se denominan focos de criptas aberrantes, y son el inicio de una proliferación glandular con diferentes alteraciones genéticas y epigenéticas (Lopez-Ceron & Pellise, 2012; Patel et al., 2015), involucradas en la secuencia adenoma – carcinoma y en el desarrollo de cuatro tipos de adenomas: tubulares, tubulovellosos, vellosos y aserrados, con diferentes grados de displasia (Conteduca, Sansonno, Russi, & Dammacco, 2013), que crecen en tamaño y acumulan mutaciones hasta convertirse en CCR. (Fearon, 2011; Greaves & Maley, 2012; Kumar, 2008; Lochhead et al., 2014; R., 2011; Schwitalla et al., 2013). Los adenomas son asintomáticos. Generalmente se descubren buscando la etiología de anemias o sangrados digestivos bajos; sin embargo, la mayoría de los carcinomas solo presentan síntomas diferentes a los de los adenomas cuando están ya avanzados y se acompañan de sangrado profuso, obstrucción intestinal y dolor o cambios en los hábitos intestinales. El CCR del lado derecho presenta diferencias clínicas, patológicas y pronósticas, comparado con el del colon izquierdo y recto. (Hansen & Jess, 2012; G. H. Lee et al., 2015; van der Sijp et al., 2016). Aproximadamente el 50% de todos los carcinomas ocurren en el rectosigmoide. La apariencia macroscópica puede ser polipoide, ulcerada e infiltrante; histológicamente son adenocarcinomas, bien, moderada o mal diferenciados, con secreción variable de mucina, que generalmente sufren una reacción linfocítica y desmoplásica. Los tumores con superficie papilar o vellosa pueden tener
Generalidades del carcinoma colorrectal (CCR) (MIM: 114500)

31

Origen en un adenoma de este tipo. (Fleming, Ravula, Tatishchev, & Wang, 2012; Mills, 2009; Rosai, 2011). La gradación de los carcinomas colorrectales ha sido definida por el porcentaje de formación glandular, así: G1: tumores bien diferenciados >95%; G2: tumores moderadamente diferenciados, 50% al 95%; G3: tumores pobremente diferenciados, 5% al 50%; G4: tumores indiferenciados, <5%. Dado que esta forma de gradación genera poca reproducibilidad interobservador, se ha postulado un nuevo modo de clasificación basada en el número de nidos pobremente diferenciados, observados en objetivos 20X, en un campo extendido. (Ueno et al., 2012). Esta clasificación probablemente se correlacione mejor con el pronóstico del paciente.

Se ha reportado que hasta un 35% de los casos de CCR puede tener una predisposición hereditaria (Abuli et al., 2014), configurándose varios síndromes de origen germinal, entre los que se cuentan: el de Lynch o Carcinoma Colorrectal no Polipósico Hereditario -HNPCC-, el de Poliposis Adenomatosa Múltiple Familiar –FAP- y los de Poliposis Hamartomatosa, Hiperplásica y Juvenil. (Kumar, 2008; Rosai, 2011).

1.3. Epidemiología del cáncer gastrointestinal

Según la Agencia Internacional del Cáncer (IARC), en su publicación electrónica GLOBOCAN 2012, los tipos de cáncer gastrointestinal se cuentan entre las primeras 10 causas de morbimortalidad en el mundo. El cáncer colorrectal es el tercero en incidencia en los hombres (746.000 casos, el 10% del total) y el segundo en mujeres (614.000 casos, el 9,2% del total). En el ámbito mundial, casi el 60% de los casos ocurren en países desarrollados. (Binefa, Rodriguez-Moranta, Teule, & Medina-Hayas, 2014). Las mencionadas tasas de incidencia varían hasta en 10 veces en ambos sexos en todo el mundo. Las más altas se estiman en Australia/Nueva Zelanda y Europa occidental; las más bajas, en África (excepto Sudáfrica) y Asia Sur-Central; y las intermedias en América Latina. (Bray et al., 2015). Las tasas de incidencia son sustancialmente más altas en hombres que en mujeres. En cuanto a la mortalidad causada por esta enfermedad, alrededor de 694.000 decesos (8,5% de todas las muertes por cáncer) la
catalogan como la cuarta causa más común de mortalidad por cáncer, con más muertes (52%) en las regiones menos desarrolladas del mundo, lo que refleja una menor tasa de supervivencia en estas regiones. (Rabeneck, Horton, Zauber, & Earle, 2015; WHO, 2012).

En Estados Unidos, en el año 2013, se estimaron 102.480 casos nuevos de cáncer de colon, 40.340 casos nuevos de cáncer rectal y 50.830 muertes por carcinoma colorrectal, lo que corresponde al 9% de todas las muertes por cáncer y al tercer puesto en mortalidad por cáncer. (American-Cancer-Society, 2013).

En Colombia, según la información del Instituto Nacional de Cancerología (INC), el cáncer gastrointestinal también se encuentra entre las primeras 10 causas de incidencia y mortalidad. En ambos sexos, el cáncer de estómago ocupa el cuarto puesto, mientras los de colon, recto y ano el quinto puesto en morbimortalidad.

En las siguiente tabla se pueden observar los primeros tipos de cáncer para nuestro país, tanto en incidencia como en mortalidad. (de Vries et al., 2015; WHO, 2012).
Tabla 1. Incidencia y mortalidad de cáncer en Colombia, ambos sexos (5 primeras causas)

<table>
<thead>
<tr>
<th>Tipo de cáncer</th>
<th>Incidencia</th>
<th>Mortalidad</th>
<th>Prevalencia - 5 años</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número (Number)</td>
<td>(%)</td>
<td>ASR (w)</td>
</tr>
<tr>
<td>Colón, recto y ano</td>
<td>5663</td>
<td>7,9</td>
<td>12,9</td>
</tr>
<tr>
<td>Estómago</td>
<td>5897</td>
<td>8,3</td>
<td>13,6</td>
</tr>
<tr>
<td>Glándula mamaria</td>
<td>8686</td>
<td>12,2</td>
<td>35,7</td>
</tr>
<tr>
<td>Cuello del útero</td>
<td>4661</td>
<td>6,5</td>
<td>18,7</td>
</tr>
<tr>
<td>Próstata</td>
<td>9564</td>
<td>13,4</td>
<td>51,3</td>
</tr>
</tbody>
</table>

SR (W): tasa por 100 000 personas
Fuente: traducido de: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
1.4. Estadificación del cáncer gastrointestinal

El sistema de clasificación TNM (Tumor, Nodes, Metastasis) es aplicable a tumores de cualquier origen anatómico, y permite que a la aproximación clínica pueda añadírsele información aportada por otros estudios complementarios como la histopatología, cirugía y biología molecular; también se constituyen en un factor pronóstico que permite analizar la invasión vascular y el grado de diferenciación, entre otros factores. (Sagaert, 2014).

Las generalidades de estadificación en los carcinomas gastrointestinales (Obrocea, Sajin, Marinescu, & Stoica, 2011; Swamy, 2010) sigue la regla de clasificación general para cada órgano de los diferentes sistemas orgánicos, y tiene su propia clasificación TNM. En este trabajo sólo es de interés la del CCR. En la tabla 2 se puede apreciar un resumen:

Tabla 2. Estadificación del Carcinoma Colorrectal

<table>
<thead>
<tr>
<th>Tumor (T)</th>
<th>Carcinoma Colorrectal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>No se puede encontrar</td>
</tr>
<tr>
<td>T0</td>
<td>No hay evidencia de tumor primario</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ (intraepitelial) (invasión o no a la lámina propia)</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor invade la submucosa</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor invade la muscular propia</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor invade a través de la muscular hacia los tejidos pericolorectales</td>
</tr>
<tr>
<td>T4a</td>
<td>Tumor penetra el peritoneo visceral</td>
</tr>
<tr>
<td>T4b</td>
<td>Tumor invade otros órganos o estructuras adyacentes</td>
</tr>
<tr>
<td>Ganglios linfáticos regionales (N)</td>
<td>Carcinoma Colorrectal</td>
</tr>
<tr>
<td>Nx</td>
<td>No se puede establecer</td>
</tr>
</tbody>
</table>
1.5. Herencia, riesgo del carcinoma colorrectal (CCR)

La heterogeneidad del CCR, en términos de localización, grado de diferenciación y respuesta al tratamiento, se ha intentado explicar con el estudio molecular de los genes implicados en el desarrollo de la enfermedad. (Bosman & Yan, 2014). Si a este componente agregamos otro factor como la heredabilidad, el riesgo a desarrollar este tipo de cáncer es del 5 al 6% (Centelles, 2012); este riesgo aumenta exponencialmente con la edad. No obstante, para el CCR en particular se estima que, en realidad, entre un 30% y un 35% de los casos tendría una base germinal, reflejada en familiogramas con agregación familiar de cáncer en algunos de los pacientes (Abuli et al.,

<table>
<thead>
<tr>
<th>Tumor (T)</th>
<th>Carcinoma Colorrectal</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>Ganglios linfáticos sin metástasis</td>
</tr>
<tr>
<td>N1</td>
<td>Compromiso gangionar:</td>
</tr>
<tr>
<td>N1a</td>
<td>Metástasis a 1 ganglio linfático regional</td>
</tr>
<tr>
<td>N1b</td>
<td>Metástasis de 2 a 3 ganglios linfáticos regionales</td>
</tr>
<tr>
<td>N1c</td>
<td>Depósitos tumorales en la subserosa, sin ganglios afectados</td>
</tr>
<tr>
<td>N2a</td>
<td>Metástasis en 4 a 6 ganglios linfáticos regionales</td>
</tr>
<tr>
<td>N2b</td>
<td>Metástasis en 7 o más ganglios linfáticos regionales</td>
</tr>
<tr>
<td>Metástasis a distancia (M)</td>
<td>Carcinoma Colorrectal</td>
</tr>
<tr>
<td>M0</td>
<td>No se identifican metástasis</td>
</tr>
<tr>
<td>M1</td>
<td>Metástasis a distancia:</td>
</tr>
<tr>
<td>M1a</td>
<td>Metástasis a un único órgano</td>
</tr>
<tr>
<td>M1b</td>
<td>Metástasis a más de un órgano o al peritoneo</td>
</tr>
</tbody>
</table>

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

La mayor parte de los casos de CCR es diagnosticados entre los 65 y los 70 años, y suelen estar asociadas a desordenes genéticos, ocasionados por mutaciones, ya sean de origen esporádico o germinal, reflejadas estas últimas en familias con múltiples casos de cáncer. Los casos diagnosticados en edades tempranas, que generalmente se corresponden con casos familiares (<50 años), se presentan en menos del 5% de los casos, a edades entre los 35 y los 40 años. Entre un 15 y un 20% de los casos corresponde a personas que tienen un familiar en primer grado con la enfermedad. El riesgo relativo es mayor y se incrementa en las familias con factores adicionales como CCR de inicio temprano o con múltiples familiares afectados. (Courtney et al., 2012).

Si se tienen en cuenta la herencia y la interacción de los genes con el medio ambiente, se pueden considerar los siguientes escenarios para el CCR:

CCR familiar: es la forma menos común de CCR. Agrupa entre un 3 y un 5% de todos los casos, y se caracteriza por una herencia mendeliana. (Fearon, 2011). Los síndromes de CCR, asociados a mutaciones hereditarias de genes de alto impacto más conocidos, son la Poliposis Adenomatosa Familiar (FAP <1%), la Poliposis asociada a MUTYH (MAP, <1%) y el Cáncer Colorrectal Hereditario no Polipósico-Síndrome de Lynch (3-5%). (Kastrinos & Syngal, 2011). Cabe anotar que un porcentaje cercano al 20% de pacientes con historia familiar de CCR y/o presentación del mismo a edades tempranas (<50 años) no tienen evidencia de mutaciones en línea germinal de los genes de alta penetrancia antes mencionados; para estos casos se han acuñado los términos CCR familiar (sin otra especificación), o CCR no sindrómico. (Armelao & de Pretis, 2014; Stoffel & Kastrinos, 2014).

CCR esporádico: agrupa la mayor parte de los casos de CCR (75-80%) (Moran et al., 2010), y se caracteriza por no presentar ningún tipo de agregación familiar. Suele relacionarse con la exposición a factores ambientales que, asociados a la variación geográfica y cultural, incrementan el riesgo de desarrollar la enfermedad. Dichos factores estarían interactuando con mutaciones de tipo somático, que conllevan a
una predisposición genética a desarrollar ese tipo de CCR, propia de cada individuo en particular. (Siddiqui, 2011; Watson & Collins, 2011).

De acuerdo con lo anterior, puede decirse que el CCR tiene una etiología multifactorial con factores de riesgo muy variados, que incluyen los hereditarios, los moleculares, los inflamatorios, los medioambientales, la edad y el sobrepeso, entre otros. (Trabulo et al., 2015). Además, inciden factores dietéticos como el alcohol, el tabaco, las grasas, la carne, una baja ingesta de vegetales y de fibra (Cappellani et al., 2013; Watson & Collins, 2011) y, el microambiente de la mucosa intestinal -microbiota e interacción proteica-. (C. C. Chang et al., 2014; Cho, Carter, Harari, & Pei, 2014; Sinha et al., 2016).

Dada la complejidad de la enfermedad, la identificación del escenario de riesgo que la desarrolla puede mejorar sustancialmente las estrategias de prevención, diagnóstico y tratamiento de la misma. (Win, Macinnis, Hopper, & Jenkins, 2012). Recientemente se han logrado definir diferentes variables, tanto ambientales como genéticas (antecedentes familiares y personales, para diferentes tipos de cáncer incluido el CCR), que permiten establecer dicho riesgo mediante programas disponibles para la comunidad en general. http://rcalc.ccf.org (Shin et al., 2014; Wells, Kattan, Cooper, Jackson, & Koroukian, 2014). Cuando se tienen en cuenta en los pacientes lesiones premalignas como pólipos o enfermedades inflamatorias intestinales autoinmunes, como la colitis ulcerativa (CU), puede decirse que, una de cada seis muertes de pacientes con CU es por CCR. En cuanto a los pacientes con la enfermedad de Crohn (CD), una de cada 12 muertes de casos de CD es por CCR. (Andersen & Jess, 2013). En los casos con agregación familiar, la historia, sobre todo la de los familiares cercanos (padres, hermanos, hijos) es importante, ya que la asociación con el riesgo aumenta entre tres y seis veces con un pariente en primer grado afectado por CCR, y esta asociación es mayor aún si hay más de un pariente de primer grado afectado por CCR. (Migliore, Migheli, Spisni, & Coppede, 2011; Rasool, Kadla, Rasool, & Ganai, 2013).

Es importante añadir que no todos los factores de riesgo genético son atribuibles a mutaciones de alto impacto en el fenotipo; existen también aquellas de bajo impacto, cuya asociación individual con el riesgo de desarrollar la enfermedad es baja, pero que en conjunción en un mismo
individuo hacen que dicho riesgo se incremente ostensiblemente, en función de su número. Este tipo de mutaciones puede tener un efecto en el fenotipo sindrómico, pequeño y aditivo, cuya parte genética heredable es de tipo cuantitativo -poligénico--; si a esto se suma el que algunos de estos loci pueden estar ligados, en cuyo caso la segregación depende del grado de ligamiento, el riesgo se hace más complejo y difícil de calcular en las familias, aun en casos en que se pueda establecer claramente el origen germinal en los familiogramas.

Se han descrito alrededor de 90 polimorfismos de base única (SNP), gracias a los cuales se ha desarrollado una estrategia de búsqueda de las variantes comunes de baja penetrancia, a través de “estudios de asociación”, en los que se comparan las frecuencias de los alelos candidatos, entre grupos de casos y controles. (Fernandez-Rozadilla et al., 2013; Hindorff, Gillanders, & Manolio, 2011; Houlson, 2012; Peters et al., 2013; Picelli et al., 2013; Tomlinson et al., 2010). Para determinar el impacto de estas variantes génicas es muy importante contar con una muestra cuyo poder estadístico sea grande, lo cual, dada la baja penetrancia de los marcadores, requiere de un gran número de casos, de los cuales puedan emerger claras las asociaciones con el riesgo de desarrollar la enfermedad. (Shirts, Jacobson, Jarvik, & Browning, 2014).

1.6. Patología molecular del carcinoma colorrectal

1.6.1. Biomarcadores moleculares del carcinoma colorrectal (CCR)

El término biomarcador ha sido usado desde 1989 como “Medical Subject Heading” (MeSH), para definir un parámetro biológico medible y cuantificable que sirva como índice para evaluar riesgo de enfermedad, de tal forma que coadyuve al diagnóstico temprano, la prevención y la respuesta a los medicamentos, entre otros aspectos. Estos marcadores generalmente se encuentran en la sangre, los fluidos o el tejido corporal. (Muc-Wierzgon et al., 2014).
Con el mejoramiento continuo en las técnicas de identificación de marcadores genéticos, análisis de ligamiento, estudios de asociación y secuenciación de alto rendimiento se han identificado genes con polimorfismos de alta y baja penetrancia, que permiten explicar, en cierta medida, el perfil molecular del CCR. Hoy en día, los cambios en la secuencia génica y en los niveles de expresión proteica, son usados frecuentemente, para monitorear la progresión de la enfermedad o la respuesta terapéutica.

En oncología clínica se viene trabajando desde hace más de una década en la identificación de las mutaciones de los genes mencionados en el apartado anterior, con el fin de escoger aquellos que permiten identificar los mejores blancos terapéuticos y ayuden a establecer, tanto el diagnóstico como el pronóstico. Entre los biomarcadores clásicos se encuentran los genes: KRAS, NRAS, BRAF, EGFR, PTEN, TP53, APC y SMAD4, considerados los más efectivos para escoger opciones terapéuticas, no solamente para CCR, sino para otras malignidades. (M. B. Chen et al., 2012; Coppede, Lopomo, Spisni, & Migliore, 2014; Jiang et al., 2012; Meguerditchian & Bullard Dunn, 2013). Para enfermedad metastásica se han recomendado estudios de metilación del ADN, ARN mensajero y micro ARN, entre otros. (Kamiyama, Noda, Konishi, & Rikiyama, 2014). Recientemente, los proyectos de investigación proponen nuevos marcadores como los heterodímeros de HER-3, IGF-1 e IGF-1R (insulin-like growth factor), micro-ARNs, c-Met, HGF, p14, p16, CDH1 (Coppede et al., 2014; Giampieri et al., 2013), SFRP2*, RARRES3+, CFTR+, FLNA+, MUC2+ y TFF3+. (Sadanandam et al., 2013). También, marcadores de células madre intestinales, como LGR5, MSI1, SOX9 y BMI1 (Espersen, Olsen, Linnemann, Hogdall, & Troelsen, 2015), todos ellos encaminados a determinar si se presentará resistencia al uso de diferentes medicamentos antitumorales y a determinar el pronóstico.

Además de los biomarcadores génicos se han postulado los metabólicos, como la adiponectina, leptina, concentraciones elevadas de lipoproteínas de alta densidad, hiperinsulinemia e hiperglicemia, que están siendo validados como factores predictivos y como pronósticos. (Muc-Wierzgon et al., 2014).

El biomarcador ideal es aquel que fácilmente se encuentre en una muestra biológica, que pueda ser detectado por métodos no invasivos, que resulte económico y que sea accesible para toda la población, sobretodo en
países en vías de desarrollo como el nuestro, en los que estamos en mora de implementarlos y de usarlos masivamente.

1.6.2. Rutas carcinogénicas en el carcinoma colorrectal

El CCR es un proceso biológico complejo que involucra muchos genes. En las últimas décadas se han identificado al menos dos mecanismos moleculares, diferentes, implicados en esta carcinogénesis: la inestabilidad cromosómica (CIN) y la inestabilidad microsatelital (MSI), por las cuales la mucosa colónica se transforma en carcinoma, proceso que se centra en los genes supresores de tumores (APC, DCC, SMAD2, TP53, SMAD4 y p16INK4a), oncogenes (RET), protooncogenes (KRAS) y genes reparadores del ADN (MMR o MUTYH). (Cancer Genome Atlas, 2012; Centelles, 2012; D. Chen et al., 2014; Deschoolmeester, Baay, Specenier, Lardon, & Vermorken, 2010; Grady & Carethers, 2008; Manne, Shanmugam, Katkooi, Bumpers, & Grizzle, 2010; Markowitz & Bertagnolli, 2009; Massimo Pancione, 2014; Moran et al., 2010; Pineda, Gonzalez, Lazaro, Blanco, & Capella, 2010; Remo, Pancione, Zanella, & Vendraminelli, 2012; Worthley, Whitehall, Spring, & Leggett, 2007). El avance en las técnicas moleculares, evidencia que estas vías pueden traslaparse o cruzarse. (JE, Medema, & Dekker, 2015).

1.6.2.1. Vía supresora

Conocida como vía de inestabilidad cromosómica (CIN) o supresora convencional; la mayoría de los tumores esporádicos (65 - 80%) (Aissi et al., 2013; Pino & Chung, 2010) se desarrollan por este mecanismo. También algunos síndromes hereditarios como la Poliposis Adenomatosa Familiar. (Shi & Washington, 2012).

En esta vía se evidencia una secuencia histológica denominada secuencia “adenoma - carcinoma” (Kahng, 2010). La primera alteración molecular es la pérdida del gen APC (5q21-q22) seguida, en su orden, de mutaciones en KRAS (12p12,1), TP53 (17p13,1) y DCC (18q21,3). La primera evidencia histológica corresponde a los focos de criptas aberrantes, seguidos por la proliferación tubular o vellosa del epitelio glandular con displasia de bajo y alto grado, como lo ilustran Moran et al, en la secuencia adenoma-carcinoma. (Moran et al., 2010).
Recientemente, algunos autores sostienen que en esta secuencia adenoma-carcinoma es evidente la disrupción epitelial con trastornos en la regulación de diferentes proteínas, importantes para entender la invasión del carcinoma, presentándose una pérdida de la regulación de la polaridad basal-apical, que originaría pequeños quistes que favorecen la migración de las células clonales. (Bell & Thompson, 2014).

A continuación se describen algunos de los genes que han sido involucrados en la secuencia adenoma-carcinoma:

APC (MIM#611731)

Es un gen de 15 exones que codifica para una proteína de 300-kDa, que regula la adhesión celular, la migración celular, la segregación cromosómica y la apoptosis en las criptas colónicas. La mayoría de los carcinomas colorrectales (hasta un 85%) presentan mutaciones del APC, las cuales son encontradas muy temprano en la formación de los adenomas. (Fearon, 2011; Kudryavtseva et al., 2016; Schneikert et al., 2013). El APC, actúa en el proceso carcinogénico como un regulador de la B-catenina, por lo que es también llamado de vía canónica o de señalización, dependiente de B-catenina; cuando ambos alelos del APC están mutados, y por tanto inactivados, la B-catenina se acumula en el citoplasma y se activan factores de transcripción. Un 50% de ellos muestran mutaciones independientes de la B-catenina; así, se destaca el papel de la wnt (Saito-Diaz et al., 2013), por su implicación en la regulación de las señales apoptóticas, concediéndole una ventaja selectiva a la célula epitelial que se multiplica y forma el microadenoma. (Krausova & Korinek, 2014).

KRAS (MIM#190070)

Es un gen con cuatro exones, que codifica para una pequeña proteína GTPasa, que hace parte de una superfamilia de GTPasas de más de 154 miembros, divididos en cinco subfamilias: Ras, Rho, Rab, Arf y Ran. KRAS es de la subfamilia Ras, tiene cuatro proteínas que difieren en la secuencia amino terminal, a saber: HRAS, NRAS, KRAS4A y KRAS4B; las últimas dos varían por splicing (empalme) alternativo; KRAS4B es la más frecuente. Todas las proteínas Ras son activadas cuando se unen al guanosin-trifosfato (GTP). Al activarse, aumentan su afinidad por las moléculas efectoras de rutas metabólicas en cascada, aguas abajo. Muchas de ellas son kinasas que inician cascadas de señalización, en este caso específico, activando la
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia
cascada oncogenética a través de la activación del receptor del factor de crecimiento epidérmico (EGFR). (Brand & Wheeler, 2012; Domagala et al., 2012; Oden-Gangloff et al., 2009a). Las mutaciones en KRAS se presentan hasta en el 50% de los CCR. (Angulo, Lopez-Rios, & Gonzalez, 2014; Fearon, 2011; Newton, Newman, & Hill, 2012; Yin, Liang, Yan, Liu, & Su, 2013). La mayoría de las mutaciones afectan al codón 12 (80 - 90%) (Deschoolmeester, Boeckx, et al., 2010; Parsons & Myers, 2013; C. Tan & Du, 2012); algunas el codón 13 o el 61, y corresponden a mutaciones missense, que producen sustituciones de aminoácidos; de estas, la más común es la sustitución de la glicina por el aspartato. (Zinsky, Bolukbas, Bartsch, Schirren, & Fisseler-Eckhoff, 2010). Las mutaciones en KRAS constituyen un paso para el desarrollo del adenoma, pero no son responsables de su inicio. Se han reportado otras mutaciones en los codones 16, 146 y 154, relacionadas con diferentes tipos de cáncer. (Brand & Wheeler, 2012; Domagala et al., 2012). Recientemente se han reportado subpoblaciones de mutaciones en KRAS, que pueden tener un impacto clínico en las respuestas a las terapias que tienen como blanco el EGFR. (Parsons & Myers, 2013). Las mutaciones en el gen KRAS son prácticamente excluyentes de las mutaciones en el gen BRAF. (Sridharan, Hubbard, & Grothey, 2014).

TP53 (MIM# 191170)
El gen supresor tumoral TP53, presente en 11 exones, y su proteína juegan un rol importante en la defensa contra el desarrollo y la progresión del cáncer, en respuesta a injurias celulares, como el daño en el ADN y la activación de oncogenes. TP53 regula la transcripción, deteniendo el ciclo celular y, en caso necesario, produciendo apoptosis, inhibición de la angiogénesis y senescencia celular. (Alan Stevens, 2009; Naccarati et al., 2012). La mutación en TP53 se ha reportado en un porcentaje que oscila entre el 40 y el 50% de los casos con CCR. La mayoría de las mutaciones se encuentran en los exones 5 a 8, que codifican para los residuos 130 a 286, una región muy importante para la estabilización de la estructura terciaria de la proteína. Esta mutación tiene como consecuencia la pérdida de la habilidad de la proteína para unirse al ADN y, por lo tanto, la pérdida de función. (Al-Kuraya, 2009). Se han descrito diferentes polimorfismos del gen que tienen una relación con la susceptibilidad al cáncer y el pronóstico de este; algunos con función biológica identificable como la variante Arg72Pro y el SNP309G. (Gemignani et al., 2004; Joshi et al., 2011). El gen TP53, ha demostrado jugar un importante papel en la respuesta a la
radioterapia en pacientes con CCR de localización rectal. (M. B. Chen et al., 2012).

Se cree que el mecanismo para inactivar uno de los alelos la función de los genes supresores tumorales en un individuo es la pérdida de heterocigosidad (LOH). Aproximadamente el 70% de los casos de CCR muestran LOH en 17p y, por lo tanto, afectan la función del gen TP53. Más o menos el 85% de las mutaciones en TP53 de sustituciones con cambio de sentido (missense) ocurren en los codones 175, 245, 248, 273 y 282, en las mutaciones sin sentido (nonsense) y en las que producen corrimiento de los marcos de lectura (frameshit), que son escasas. (Fearon, 2011).

En algunos casos se ha encontrado un acortamiento en la telomerasa, incluso antes de que se presenten mutaciones en KRAS o TP53; además, el tipo de fusión de la telomerasa puede variar, dependiendo del tipo de tumor. (Tanaka, Beam, & Caruana, 2014).

1.6.2.2. Vía mutadora

Recibe también el nombre de vía de inestabilidad microsatelital (MSI), por su nombre en inglés (“microsatellite instability”). Esta vía se caracteriza por el aumento o disminución de secuencias repetidas de nucleótidos, lo cual es una consecuencia de la disfunción de los genes del sistema de reparación de apareamientos erróneos (“mismatch repair” - MMR). Por esta vía se explica la aparición del síndrome de Lynch, y hasta un 15% de los casos de CCR esporádicos. (Boland et al., 1998). En la década de los 90 se estableció un panel de microsatélites, con el fin de realizar un tamizaje que permitiera identificar a los posibles portadores de mutaciones en MMR. (Bedeir & KRAINSKAS, 2011). Esta condición también se conoce como fenotipo hipermutador (Boland & Goel, 2010), que produce la inactivación de diferentes tipos de genes, como por ejemplo los que regulan la apoptosis (genes BAX o Caspasa-5), y otros implicados en el control y regulación del crecimiento celular (TGFβR2, WISP-3 o IGFIIR). (Laurent-Puig, Agostini, & Maley, 2010; Yashiro, Hirakawa, & Boland, 2010). Se ha intentado asociar los tumores con alta inestabilidad microsatelital a una mayor sobrevida, independientemente del estatus de BAX o TGFβR2, a través de diferentes estudios. (Bolocan, Ion, Ciocan, & Paduraru, 2012; Shima et al., 2011).
Los casos de CCR que presentan una alta inestabilidad microsatelital (MSI-H) tienen deficiencia del sistema MMR y, por lo tanto, errores de replicación dependientes de la polimerasa, que se pueden presentar aproximadamente en un 12% de los tumores esporádicos y asociados con el síndrome de Lynch. Generalmente se localizan en el colon derecho, presentan infiltración por células inflamatorias tipo linfocitos, patrón de crecimiento expansivo y una diferenciación celular mucinosa, medular o en anillo de sello, y relativamente un mejor pronóstico, comparado con los tumores estables para microsatélites. (MSS) (Kloor, Staffa, Ahadova, & von Knebel Doeberitz, 2014).

1.6.2.3. **BRAF (MIM#164757)**

El proto-oncogen tipo B de raf (BRAF) codifica para una de las tres kinasas de raf. Está localizado en 7p34, kinasa serina/treonina; juega un rol en la señalización intracelular y en el crecimiento celular, y es un efector, aguas abajo de KRAS, en la vía de señalización protein kinasa (MAPK), mitógeno activada. Pertenece a la familia de las serin-treonin-kinasas-RAF (Levidou et al., 2012), que incluye además los genes ARAF y CRAF. (Qin et al., 2012). La mutación BRAF V600E consiste en una transversión de una timina por una adenina en el nucleótido 1.799 de la secuencia de BRAF (p.Val600Glu). Las alteraciones moleculares ocasionadas por esta mutación se localizan en el dominio quinasa de la proteína, y conducen a la sustitución de un residuo de valina por uno de glutamato, cuya carga negativa mimetiza la fosforilación de los residuos treonina 599 y serina 602, necesarios para la activación de BRAF; frecuentemente está asociada con MSI. Se presenta en pacientes con CCR aserrado en un amplio rango que oscila entre un 5 y un 22%, y aproximadamente en un 15% de casos de CCR esporádico. Se han logrado asociar las mutaciones en BRAF con una resistencia clínica al tratamiento con anticuerpos monoclonales dirigidos contra el factor de crecimiento epidérmico (EGFR). La mutación BRAF V600E en CCR está asociada con características clínico-patológicas de alto riesgo, que le confieren un curso clínico agresivo; por lo tanto, es considerada como un biomarcador de mal pronóstico. (D. Chen et al., 2014; Kalady et al., 2012; Murcia et al., 2016; Pritchard & Grady, 2011; Ritterhouse & Barletta, 2015).

1.6.2.4. **Vía epigenética**

Esta vía, también llamada de fenotipo metilado (CIMP) o aserrada, genera inestabilidad genómica. Las modificaciones epigenéticas se
presentan por hipermetilación mediada por la acción de las enzimas ADN-metiltranserasas (DNMTs), por hipometilación y por modificaciones covalentes postrasduccionales en las histonas, entre otros mecanismos. (Bardhan & Liu, 2013; Coppede, 2014; Vaiopoulos, Athanasoula, & Papavassiliou, 2014). Como consecuencia, se produce inactivación en genes supresores tumoriales o en genes reparadores del ADN, especialmente en el gen MLH1 del grupo MMR o el APC; por este mecanismo, estos genes de alta penetrancia son inactivados por vía del promotor. (Matsubara, 2012). Existe una correlación directa entre la hipermetilación del promotor del MLH1 y las mutaciones en el gen BRAF. Dicha asociación se presenta casi siempre en casos esporádicos de la enfermedad. También se han descrito en el espectro del fenotipo metilado. (Arends, 2013; Menendez, Villarejo, Padilla, Menendez, & Rodriguez Montes, 2012).

1.6.3. **Subtipos moleculares del carcinoma colorrectal (CCR)**

Como es evidente, el CCR es una enfermedad heterogénea, que en cada individuo afectado puede tener diferencias en su presentación clínica, en sus características moleculares y en su pronóstico; por tal razón, es cada vez más importante determinar el genotipo molecular individual que puede ayudar a identificar un tratamiento específico que beneficie al paciente, disminuyendo los efectos adversos y reduciendo los costos de la salud pública estatal. La estratificación molecular facilitará el desarrollo de nuevos agentes terapéuticos. Se han propuesto los siguientes subtipos de CCR:

- **Tumores que se caracterizan por mutaciones en los genes KRAS y TP53**, que evidencian una actividad alta en la cascada de señalización wnt y marcada inestabilidad cromosómica (CIN). Tienen en general mejor pronóstico y responden bien la terapia anti-EGFR.

- **Cánceres con un fenotipo metilador (CIMP)**, con inestabilidad microsatelital (MSI); son tumores que tienden a localizarse en el colon derecho y exhiben una reacción inflamatoria. También presentan buen pronóstico, pero no se conoce bien su respuesta al EGFR.
■ Tumores que presentan CIN y MSI, pero están acrecentados con mutaciones en BRAF y PIK3CA y despliegan un fenotipo mesenquimal. Este tipo de tumor es agresivo, invasivo, de pobre pronóstico y no responde a la terapia contra EGFR. (Dienstmann, Salazar, & Tabernero, 2014; Linnekamp, Wang, Medema, & Vermeulen, 2015; Van Cutsem et al., 2013; Zhu et al., 2013).

Se ha planteado otra vía molecular como precursores a los adenomas aserrados para los tipos 1 y 2, mientras que en los tipos 4 y 5 esta involucrada la secuencia adenoma- carcinoma. Los tipos 1 y 4 representan puntos de referencia con mínima sobreposición; cada tipo presenta su propio cuadro clínico y sus propias características histológicas. (Jass, 2007).

Adicionalmente, se ha propuesto una nueva clasificación para el CCR esporádico:

■ Vía aserrada: el evento inicial es mutación en BRAF, que produce pólipos hiperplásicos microvesiculares; posteriormente, metilación del promotor de p16, IGFBP7 y la consecuente formación del adenoma aserrado sésil; luego, metilación de los genes MLH1, TGFB, TP53, que puede terminar con MSI-H o MSS.

■ Vía alterna: puede iniciarse en dos puntos: el primero con mutación en KRAS, seguido de metilaciones en p16, IGFBP7 y daño en la vía wnt, con la consecuente formación de adenomas aserrados. El segundo punto de inicio sería con mutaciones en APC, con la consecuente formación de adenomas tubulares; luego, metilaciones en MGMT y mutaciones en KRAS, que resultarían en formación de adenomas tubulovellosos. Cualquiera de los dos puntos de inicio desarrolla MSS, CIMP-L.

■ Vía tradicional: inicia con mutaciones en APC con formación de adenomas; luego, mutaciones en TP53, LOH, con formación de adenomas tubulares con displasia severa; finalmente, MSS, CIN-H, CIMP-negativo. (Leggett & Whitehall, 2010).

Con el advenimiento de las técnicas de secuenciamiento masivo, aparecieron nuevos enfoques en la clasificación del CCR; por ejemplo, gracias al proyecto The Cancer Genome Atlas (TCGA), el más grande en el campo de la oncología molecular de las últimas décadas, desarrollado...
en el año 2012, que comprende genómica, transcriptoma y metiloma, se encontraron dos nuevos subtipos:

- Hipermutado: con más de 10 sustituciones no silenciosas por megabase.
- No hipermutado.

Las variaciones dentro de los grupos son muy grandes, y cada grupo se subdivide de acuerdo con las alteraciones en las vías de señalización (TGFβ, KRAS, PI3K, TP53) que dirijan las mutaciones y a los subtipos clásicos (CIMP, CIN, MSI). (Cancer Genome Atlas, 2012).

En 2013 se planteó una nueva clasificación para el CCR, en la que se proponen siete subtipos:

- MSI y/o mutaciones BRAF.
- CIN y/o mutaciones TP53, KRAS y PIK3CA silvestres.
- KRAS y/o mutaciones PIK3CA, CIN, TP53 silvestre.
- KRAS y/o mutaciones PIK3CA, CIN negativo, TP53 silvestre.
- Mutaciones en NRAS.
- Sin mutaciones.
- Otros. (Domingo et al., 2013).

Otro autores identifican cinco subtipos, basados en la expresión de 786 genes, de acuerdo con la morfología de las células de la cripta colónica: enterocíticas, caliciformes, de transición, en proceso inflamatorio y células madre. (Sadanandam et al., 2013). De igual manera, analizan el papel que juegan los micro ARN en la patogénesis del CCR, con el silenciamiento de genes supresores tumurales o la sobreexpresión de oncogenes. (Zoratto et al., 2014).

Adicionalmente, se lideró la formación de un consorcio internacional, con el fin de llegar a un consenso para reunir las clasificaciones existentes en cuatro subtipos moleculares, así: CMS1: (14%) MSI, inmune: hipermutado, CIMP alto, mutaciones BRAF.

CMS2: (37%) vía canónica, epitelial, CIN, desregulación metabólica, wnt y MYC.
CMS3: (13%) metabólica, MSI mixto CIMP bajo, mutaciones KRAS, desregulación metabólica.

CMS4: (23%) mesenquimal, invasión estromal y angiogénesis, activación TGFB, (Guinney et al., 2015).

De todo lo anterior se puede concluir que la complejidad de la clasificación del CCR refleja la diversidad de los posibles escenarios de desarrollo de la enfermedad. Estas vías no solo tienen diferentes puntos de partida, sino también una serie de puntos de bifurcación durante la evolución de los pólipos, adenomas y adenocarcinomas. Las investigaciones futuras deben enfocarse en construir una clasificación molecular unificada, que pueda finalmente traducirse en la práctica clínica, no solo en los países desarrollados, sino en países como el nuestro, en vías de desarrollo. (Kudryavtseva et al., 2016).

Además de los subtipos moleculares debemos tener en cuenta la identificación de mutaciones de alta y baja penetrancia, que contribuyen significativamente en la comprensión de los procesos genéticos moleculares. Esto facilita el desarrollo de fármacos terapéuticos y de estrategias preventivas. (Cheng, Yang, Chen, & Zhang, 2013). Las interacciones gen-gen y gen-ambiente tienen una influencia significativa en la susceptibilidad a desarrollar CCR. Para establecerlas es necesario tener presentes los factores que dirigen la expresión de mutaciones patogénicas, que incluyen aberraciones genómicas en un contexto heterocigoto, la variedad de productos de los genes silvestres y mutados y los factores medioambientales. (Kaemmerer, Klaus, Jeon, & Gassler, 2013). Sin embargo, el conocimiento de estas interacciones es limitado, motivo por el cual es necesario realizar esfuerzos en este ámbito de la investigación, que permitan un mejor discernimiento de la predisposición a este tipo de cáncer.
Capítulo 2

MATERIALES Y MÉTODOS
2.1. Aprobaciones éticas

El programa “Análisis genético de enfermedades humanas” y el proyecto CHIBCHA (Genetic study of Common Hereditary Bowel Cancers in Hispania AND the Americas), en los que se inscribió la presente propuesta, contaron con la aprobación ética y bioética de la Universidad del Tolima y de las entidades de salud de donde provenían los pacientes (I.P.S – E.P.S).

El consentimiento informado fue elaborado teniendo en cuenta la reglamentación internacional http://www.wma.net/en/10home/index.html y las regulaciones nacionales al respecto. En este sentido, se presentó a los participantes una carta de información que describe de manera clara y concisa los objetivos y alcances de la vinculación en la investigación.

El protocolo de investigación y sus anexos fueron presentados para evaluación bioética y científica en los diferentes centros e instituciones hospitalarias vinculadas, en las regiones de Antioquia, Bogotá, Zona Cafetera, Tolima, Huila y Nariño, con el fin de cumplir los requisitos pertinentes para la aprobación del consentimiento informado, entrevista y toma de muestras.

2.2. Muestra

2.2.1. Selección de pacientes

Durante seis años se seleccionaron en los consultorios de oncología y en los laboratorios de patología, pacientes con CCR (adenocarcinoma).
Criterios de inclusión: haber sido diagnosticado con CCR en los últimos 2 años (al momento de la toma de la muestra). Criterios de exclusión: padecer de cáncer de ano de tipo cloacogénico o neuroendocrino. Una vez seleccionado el paciente, se contactó, se le presentó la carta de información de la investigación, se aplicó el consentimiento informado y se llevó a cabo la la entrevista, la cual incluye: datos demográficos, pedigrí y reporte de anatomía patológica, de acuerdo con el protocolo diseñando para tal fin en el laboratorio del Grupo de Investigación de Citogenética, Filogenia y Evolución de Poblaciones. Los documentos están almacenados en físico y digital (escaneado), en las instalaciones de la Universidad del Tolima.

Los pacientes se seleccionaron de los centros oncológicos, hospitales, E.S.E. (Empresas Sociales del Estado), I.P.S. (Instituciones Prestadoras de Salud) y laboratorios de patología, en las ciudades de Ibagué, Neiva, Bogotá, Medellín y Pasto. A través del Instituto Nacional de Cancerología (INC) se incluyeron pacientes de Barranquilla, Santa Marta, Cartagena y Cali.

2.2.2. Muestras de sangre periférica

Se tomaron por venopunción convencional, en tres tubos tapa lila (anticoagulante EDTA); todas las muestras se anonimizaron, asignándoles un código de identificación por ciudad, se almacenaron a 4°C hasta su extracción, y posteriormente a menos 20°C, para su almacenamiento definitivo, en el Laboratorio de Citogenética, Filogenia y Evolución de Poblaciones, de acuerdo con los protocolos de procedimiento diseñados para manejo de muestras biológicas.

2.2.3. Muestras del tejido tumoral y normal

Para la obtención de las muestras de tumor y de tejido normal, incluidas en parafina, de los pacientes con CCR, se siguieron los siguientes pasos: 1. Consentimiento informado y carta de permiso para retiro de bloques tumoreales y normales. 2. Análisis del reporte de patología, procedente de los laboratorios de patología de las instituciones participantes. 3. Revisión
y escogencia de las láminas teñidas con hematoxilina y eosina de cada caso, para los estudios de inmunohistoquímica, preferiblemente una de tejido tumoral y otra de tejido normal, aunque en ocasiones podían ser mixtas, en cuyo caso se mapeaban externamente con marcador. 4. Selección por comparación con las láminas teñidas, de las correspondientes no teñidas, y mapeo de las mismas. 5. Selección de los bloques incluidos en parafina (FFPE), en lo posible tanto de tumor como de tejido normal, para extracción de ADN.

Como método alterno para la obtención de tejido tumoral y normal, se acordó con los médicos cirujanos recibir inmediatamente después de la resección (colectomía derecha, izquierda, proctocolectomía, etc.) el espécimen, al cual se le realizó la descripción de los hallazgos macroscópicos, se abrió, cuidando de no alterar los márgenes de sección y se procedió a realizar la toma de una muestra de tumor; se incluyó en citoresina, congelamiento inmediato, y posterior corte y verificación de la presencia de adenocarcinoma, para pasar al protocolo de extracción de ADN. Igual procedimiento se realizó para el tejido normal, teniendo especial cuidado en tomar la muestra de la mucosa normal más alejada del tumor, idealmente a una distancia mayor de 10 cm. Las muestras fueron almacenadas a -20°C hasta su extracción, y luego, a -80°C.

2.3. Extracción y cualificación de ADN

2.3.1. Sangre periférica

El ADN de sangre se extrajo con el equipo Maxwell (promega®), usando las recomendaciones del fabricante, los cuales están detallados en la página web: http://worldwide.promega.com/products/dna-and-rna-purification/genomic-dna-purification-kits/maxwell-16-system-dna-purification-kits/maxwell-16-blood-dna-purification-kit/. Este proceso de purificación automatizada de ADN (S. C. Tan & Yiap, 2009) necesita 400 microlitros de sangre completa o 250 de buffy coat, que se procesan en tandas de 16 muestras por 36 minutos; usa partículas magnéticas, las cuales optimizan el proceso de purificación, evitando los restos de reactivos y proteínas que
acompañan el ADN. El proceso se basa en la utilización de las partículas magnéticas que se unen a los ácidos nucleicos de la muestra permitiendo su separación mediante la atracción de estos por una barra metálica magnetizada. El protocolo implica una fase de lisis y otra de purificación en la que las barras magnéticas atrapan el ADN unido a las perlas, hacia el buffer de elución, y un cambio en los campos magnéticos libera el ADN. El volumen final es de 120 microlitros, con un rendimiento promedio de 50 nanogramos (ng) /microlitro (µl). El ADN obtenido se almacena a -20°C. Los procedimientos se realizaron de conformidad con los protocolos de procedimiento interno: Preparación de muestras de sangre para purificación de ADN en el maxwell-16 y procedimiento para usar el maxwell-16 en la purificación de ADN a partir de sangre.

La cuantificación se realizó por métodos espectrofotométricos con un NanoDrop ND-1000 Spectrophotometer (Thermo-Fisher, 2013). Este método mide la absorbancia a las longitudes de onda UV y visible; el rango de detección es de 2 a 3700 ng/µl, de ADN de doble cadena. Se coloca 1,5 a 2 µl de la muestra sin diluir en el pedestal del NanoDrop, y este mide la absorbancia de la muestra a 230 nm, 260 nm y 280 nm. La absorvancia máxima del ADN es a 260 nm y así, aplicando la formula ADN (µg/µL) = (Abs260 x FD x 50) /1000, se determina la concentración de ADN. Las convenciones son las siguientes: Abs260 es la absorbancia de la muestra a 260nm; FD factor de dilución de la muestra; 50 factor que indica que una absorbancia de 1,0 si se tienen 50 µg/mL de ADN de doble cadena y 1000 factor de conversión de mL a µL.

El valor de la lectura a 230nm (longitud de onda mínima de absorbancia del ADN) está influenciado por la cantidad de sales presentes en la muestra, mientras la longitud de onda a 280nm es específica para las proteínas. Como consecuencia, atendiendo a las relaciones de absorbancia a 260/280 y 260/230 se puede establecer el grado de pureza de la muestra. Los procedimientos se realizaron acorde con los protocolos de procedimiento interno: Procedimiento general para el uso del nanodrop nd-2000, procedimiento para cuantificar ADN empleando el nanodrop ND-2000, procedimiento para el uso de las micropipetas y normas de bioseguridad para trabajar en las áreas de purificación y cuantificación de ácidos nucleicos. Como control de calidad, al 10% de las muestras se le realizó Qubit o electroforesis en gel de agarosa al 1%, con bromuro de etidio.
2.3.2. Tejido tumoral y tejido normal

El ADN del tejido tumoral y del tejido normal de los bloques de parafina (FFPE) se obtuvo de tres formas, dependiendo de las oportunidades de acceso a los diferentes tejidos:

2.3.2.1. Tejido incluido en parafina FFPE – láminas portaobjetos

En esta opción se escogió un bloque de parafina que en lo posible solo tuviera tumor. Se limpió con alcohol al 96%, se comparó con la lámina de hematoxila y eosina correspondiente (Esteban-Jurado et al.) y, tomando medidas asépticas, se cortaron los tejidos con micrótomo, cinco placas porta objetos a 10 micras de espesor. Luego de esto se cortó una nueva lámina para coloración de H-E; así, se verificó la muestra tumoral. Se aplicó el protocolo del Kit de Qiagen “QIAGEN KIT, DNeasy – Blood & Tissue Kit, Cat, N° 69504” (QIAGEN, 2013), disponible en http://www.qiagen.com/products/catalog/sample-technologies/dna-sample-technologies/genomic-dna/dneasy-blood-and-tissue-kit#technicalspecification.

El mismo proceso se utilizó con el tejido normal. Durante el procedimiento, los tejidos sano y tumoral raspados fueron transferidos por separado a tubos de 2 ml con una cantidad de entre 90 y 180µl de buffer ATL (tissue lysis), dependiendo de la cantidad de tejido obtenido. Posteriormente, se agregaron 20µl de proteinasa k, y la mezcla se agitó por 20 segundos con vortex. La muestra se mantuvo en baño maría a 56°C por 24 horas, tiempo durante el cual en el tejido se desnaturalizan las proteínas. Se agregó buffer AL, se agitó en vortex y se adicionaron 200µl de etanol (96%). Se agitó en vortex y se incubó durante 10 minutos a 70°C en baño seco. Se centrifugó durante un minuto a 13.000 revoluciones por minuto, y se depositó todo el producto en un la columna DNAeasy para su centrifugado a 8.000 rpm por un minuto, a temperatura ambiente. Se cambió el tubo de recolección por uno nuevo, teniendo en cuenta no tocar la parte inferior de la columna. Se adicionaron 500 µl de buffer AW1 y se centrifugó a 8.000 rpm por un minuto. Luego, se descartó el tubo colector y se colocó un nuevo tubo. Se adicionaron 500 µl de buffer AW2, se centrifugó a 14.000 rpm por 3 minutos. Se descartó el tubo colector, se colocó uno nuevo y se adicionaron 100 µl de buffer AE a la columna; se mantuvo a...
temperatura ambiente por 1 minuto y se centrífugó a 14.000 rpm por un
minuto, para recuperar el contenido del tubo recolector. Nuevamente se
centrífugó durante un minuto a 14.000 rpm. Finalmente, el ADN obtenido
se transfirió a un tubo de 2ml con tapa rosca nuevo.

El ADN se transfirió a nuevos tubos estériles, debidamente rotulados,
y se almacenó a -20°C, de acuerdo con el protocolo de procedimiento
denominado: Extracción de ADN a partir de tejido tumoral y normal
(fresco o congelado), mediante el kit de Qiagen-DNeasy blood & tissue kit
(250) cat, # 69506.

2.3.2.2. Tejido incluido en parafina FFPE – bloques de tejido

En este segundo método se raspó directamente del bloque de tejido
incluido en parafina, con bisturí y previa demarcación con la lámina H-E. En
la medida de lo posible se usaron bloques separados para el tejido tumoral y
normal; se descartaron aquellos bloques en los cuales el rótulo no estuviera
claro, el material tumoral y normal estuviera mezclado o a menos de 1 cm
de distancia. Posteriormente, se aplicó el procedimiento descrito para la
extracción de ADN a partir de tejido. Los casos sin tejido tumoral fueron
descartados. En los casos sin tejido normal se utilizó el ADN obtenido de la
sangre como tejido normal.

2.3.2.3. Tejido fresco

Esta tercera forma de obtener ADN de tejido tumoral y normal se
realizó asistiendo a las resecciones de colon programadas de pacientes
diagnosticados con CCR. Se recibieron directamente en el quirófano los
especímenes, los cuales eran descritos y abiertos, teniendo en cuenta
los protocolos del Colegio Americano de Patólogos para manejo de
especímenes oncológicos. Posteriormente, se identificó el tumor y se tomó
una muestra de 0,5 cm de diámetro mayor, se agregó criogel (criomatrix)
y se congeló de manera inmediata en nitrógeno líquido. El resto del
espécimen se fijó en formol y se entregó para estudio histopatológico.
También se tomó una muestra de tejido normal del sitio más alejado
del tumor. Posteriormente se realizaron cortes en tejido congelado en
criostato para verificar el tumor, y se aplicó el procedimiento descrito para
la extracción de ADN a partir de tejido, teniendo en cuenta mantener el
tejido siempre en hielo seco.
Para tener un acercamiento a la concentración y calidad del ADN obtenido, al 80% de las muestras se le realizó una electroforesis en gel de agarosa al 2%, con tinción con bromuro de etidio, con 5 µl del ADN extraído en cada caso. La cuantificación del ADN se realizó con el NanoDrop ND-1000 Spectrophotometer, siguiendo las recomendaciones de los fabricantes y descritas anteriormente, http://www.thermoscientific.com/en/product/nanodrop-2000-2000c-spectrophotometers.html (ThermoFisher, 2013), y verificada con Qubit. Este procedimiento de control de calidad del ADN se llevó a cabo en el Lab Carvajal-Carmona del Genome Center & Department of Biochemistry and Molecular Medicine, UC Davis. Este método está basado en la fluorescencia de un agente (SYBR 32) que se une de manera específica al ADN de doble cadena, con el kit “Quant-iTTMds DNA HS assay invitrogen”; la emisión fluorescente es detectada por un fluorómetro. Esta medición se realizó de acuerdo con las recomendaciones del fabricante http://tools.lifetechnologies.com/content/sfs/manuals/mp32866.pdf. Para este proceso, se preparó una solución de trabajo compuesta por una dilución de reactivo Quant-iT en buffer en relación 1:200 por cada muestra. Se dispusieron dos tubos de concentración conocida o estándar para calibrar el equipo, adicionando 190 µl de solución de trabajo y 10µl del estándar 1 y 2. Para la preparación de la muestra se agregaron 199 µl de solución de trabajo y 1 µl de ADN. Cada tubo se agitó en vortex durante 3 segundos y se mantuvieron los tubos a temperatura ambiente por 2 minutos antes de la lectura.

Los protocolos de PCR-FCE y NGS se realizaron en la UC-Davis, Laboratorio de Genómica.

2.4. Inestabilidad microsatelital (MSI)

2.4.1. Evaluación de loci y procedimiento de amplificación

El análisis de MSI se realizó mediante PCR con sondas fluorescentes, de manera individual para cada microsatélite, basados en el panel de Bethesda, recomendado por el Instituto Nacional de Salud de los Estados
Unidos y reportado en diferentes estudios de investigación. Se verificaron las secuencias de los cebadores en el sitio web “UCSC Genome Browser” http://genome.ucsc.edu/; los cebadores usados se diseñaron en el programa: http://primer3plus.com/, los productos in silico esperados se compararon en programa http://genome.ucsc.edu/. Los cebadores utilizados se describen en la tabla 3 y las condiciones para la amplificación se detallan en la tabla 4.

Tabla 3. Cebadores para la amplificación microsatelites - MSI

<table>
<thead>
<tr>
<th>Marcador</th>
<th>Forward</th>
<th>Revers</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-26</td>
<td>6TGACTACTTTTGACCCAGT</td>
<td>TTCTTCAGTATGTCAATGAAAACA</td>
</tr>
<tr>
<td>BAT-25</td>
<td>6TCGCCTCAAAGAATGTAAGT</td>
<td>TCTGGATTCTAEECTATGGCTC</td>
</tr>
<tr>
<td>D2S123</td>
<td>6AAACAGGATCCCTGCTCTTA</td>
<td>GGACTTCCACCTATGGGAC</td>
</tr>
<tr>
<td>D5S346</td>
<td>8ACTCACTCTAGTATAATCCGGG</td>
<td>AGGAGATAAGCAGATTACTAGTT</td>
</tr>
<tr>
<td>D17S250</td>
<td>8GGAAGAATCCTAGACAAAT</td>
<td>GCTGCGATATATATATTAACC</td>
</tr>
</tbody>
</table>

6: FAM (6-carboxyfluorescein)
8: HEX (hexachloro-6-carboxyfluorescein)

Fuente: los autores

Tabla 4. Condiciones amplificación microsatelites - MSI

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 µM</td>
<td>1</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 µM</td>
<td>1</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
</tr>
<tr>
<td>DH₂O</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ADN</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total reacción</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condiciones de Amplificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturación inicial 95°C por 5 min</td>
</tr>
<tr>
<td>38 Ciclos</td>
</tr>
<tr>
<td>Denaturación 94°C por 1 min</td>
</tr>
<tr>
<td>Alineamiento 55°C por 1 min</td>
</tr>
<tr>
<td>Extensión 72°C por 1 min</td>
</tr>
<tr>
<td>Extensión final 71°C por 10 min</td>
</tr>
<tr>
<td>Conservar a 12°C</td>
</tr>
</tbody>
</table>

Fuente: los autores
Las condiciones de amplificación se estandarizaron con MyTaq. Esta polimerasa contiene en una sola reacción el buffer, el magnesio y los Dntp. El volumen total de la reacción fue de 20 µl, con los siguientes ciclos de temperatura: denaturación inicial 95°C por 5 minutos, seguido de 38 ciclos (denaturación 94°C, por 1 minuto; alineamiento 55°C, por 1 minuto; extensión 72°C, por 1 minuto); extensión final 72°C, por 10 min; conservación a 12°C. Se usaron termocicladores BIORAD C1000®. Se realizó un control negativo por cada marcador. La verificación de amplificación inicial se realizó en gel de agarosa al 1,5%.

2.4.2. Detección por electroforesis capilar

Se realizó en el secuenciador ABI 3730 (Applied Biosystems, Foster City, CA). Como matriz se utilizó el polímero POP7, el cual permite separar fragmentos de ADN de cadena sencilla que se diferencian en una única base.

2.4.3. Análisis de los datos

Luego de pasar las muestras por electroforesis capilar, se aplicó el software STRAND®, suministrado por el Laboratorio de Genética de la Facultad de Veterinaria de la UC Davis. El programa detecta los alelos como picos que dependen de la intensidad de cada uno de los fragmentos, y proporciona directamente el número de bases, de acuerdo con las unidades de fluorescencia y la altura de los picos. Dado que cada microsatélite está unido a una sonda fluorescente, tiene un color diferente y una longitud diferente, lo que le da un tamaño de pico diferente. Se comparan el tamaño, el color y la intensidad de los picos del tejido tumoral y del normal. Las diferencias entre ellos permiten determinar la inestabilidad. Los microsatélites analizados y sus rangos de referencia se muestran en la tabla 5.
Tabla 5. Microsatélites, panel Bethesda.

<table>
<thead>
<tr>
<th>Marcador</th>
<th>Tipo de la repetición</th>
<th>Rango - tamaño del alelo (bp)</th>
<th>Gen cercano al marcador</th>
<th>Cromosoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-25</td>
<td>Mononucleótido</td>
<td>110 -130 (122)</td>
<td>C-Kit</td>
<td>4q11-12</td>
</tr>
<tr>
<td>BAT-26</td>
<td>Mononucleótido</td>
<td>112-120 (117)</td>
<td>MSH2</td>
<td>2p</td>
</tr>
<tr>
<td>D2S123</td>
<td>Dinucleótido</td>
<td>197 – 227</td>
<td>MSH2</td>
<td>2p16</td>
</tr>
<tr>
<td>D5S346</td>
<td>Dinucleótido</td>
<td>96 -129</td>
<td>APC</td>
<td>5q21</td>
</tr>
<tr>
<td>D17S250</td>
<td>Dinucleótido</td>
<td>130 – 170</td>
<td>BRCA1</td>
<td>17q11,2-q12</td>
</tr>
</tbody>
</table>

Fuente: ncbi.nlm.nih.gov/clinvar

2.5. Inmunohistoquímica – IHC – MLH1

Para la realización de las pruebas de inmunohistoquímica (IHC) se revisaron todas las láminas de H-E y se cortaron los bloques de tejido que no tenían lámina. Se escogieron aquellos casos que tenían representación de tejido tumoral y normal, se cortaron en micrótomo y se obtuvieron entre tres y cinco placas con tejido a 4 micras de espesor para las pruebas de IHC de la proteína MLH1, preferiblemente en la misma placa con tejido normal. (Alonso-Espinaco et al., 2011; Koinuma et al., 2004; Shia et al., 2009). Los cortes se fijaron a la lámina cargada en incubadora por cuatro días, a 60ºC, y se dejaron secar durante 2 o 3 horas a temperatura ambiente.

2.5.1. Inmunotinción

Se realizó con el Equipo Ventana BenchMark GX (Roche Diagnostics International Ltd.), en el cual se llevaron a cabo los siguientes procesos:

2.5.1.1. Desparafinación del tejido

El retiro de la parafina del tejido fijado en la lámina cargada se realiza por calentamiento, mediante EZ Prep de Ventana Medical Systems Ref 950-102, con ciclos de 4 minutos a 75ºC, por 60 min. La eliminación de la parafina, en la que se embeben los cortes de tejidos en los Automated Slide Stainers de Ventana, se consigue mediante la combinación de calor, una solución detergente suave (EZ Prep) y mezcla vorticial. El calentamiento funde la
parafina de los cortes de tejidos, el detergente reduce la tensión superficial de la solución acuosa, ayudando a la liberación de parafina fundida del tejido, y la agitación vorticial evita que la parafina se vuelva a depositar sobre los portaobjetos, para que pueda ser eliminada mediante aclarado.

2.5.1.2. Acondicionamiento celular

El desenmascaramiento del antígeno se realiza aplicando Cell conditioning solution (CC1), de Ventana Medical Systems Ref 950-124, por 60 minutos. El CC1 es un tampón basado en el tampón tris, con un pH ligeramente básico, que a temperaturas elevadas puede hidrolizar los enlaces covalentes formados por el formol en los tejidos. La eliminación de estos enlaces permite la renaturalización de las moléculas protéicas y aumenta la accesibilidad de los anticuerpos.

2.5.1.3. Inmunomarcaje

Este procedimiento consiste en un anticuerpo monoclonal Anti-MLH-1 (M1) de ratón, aplicado contra una proteína MLH1 recombinante de extensión completa, con una etiqueta GST, referencia: 790-4535 Ventana. La concentración del anticuerpo específico es aproximadamente de 1,4 μg/mL, y el tiempo de incubación 20 minutos, a 37°C. Posteriormente, se aplica el Kit de Detección: UltraView Universal DAB de Ventana Medical Systems Ref 760-500. Este kit utiliza un coctel de anticuerpos secundarios, marcados con enzimas que localizan el anticuerpo primario unido; el complejo se visualiza con sustrato de peróxido de hidrógeno y cromógeno de tetrahidrocloruro de 3,3´diaminobencidina (DAB), que produce un precipitado de color marrón oscuro.

2.5.1.4. Contratinción

La coloración se realiza con Hematoxilina de Gill, modificada de Ventana Medical Systems Ref 760-2021, por 4 minutos, y con Bluing Reagent (solución acuosa de carbonato de litio tamponado) de ventana Medical Systems Ref 760-203, por 4 minutos. Finalmente, se monta la lámina, se rotula y se pasa al proceso de lectura.

2.5.1.5. Interpretación de la prueba IHC-MLH1

El proceso de lectura e interpretación fue realizado por dos patólogos de manera independiente -doble ciego-, clasificando como positiva la tinción nuclear fuerte y como negativa la ausencia de la misma. Adicionalmente,
se valoró el porcentaje de células positivas entre 0% y 100%. Se compararon los resultados y se realizó una revisión, en junta de mínimo tres patólogos al 10% de los casos positivos, valga decir, aquellos que conservaban la expresión proteica y todos los casos con pérdida de la expresión de la proteína. También se revisaron en junta de patólogos aquellos casos en los que no hubo concordancia en la observación inicial.

2.6. Amplificación y secuenciación de genes por PCR convencional

Este procedimiento fue realizado a los casos del material tumoral incluido en parafina (biopsias y resecciones de colon); para los genes APC, KRAS, BRAF y TP53. Los cebadores se diseñaron en el programa PRIMER3 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi, a partir de la secuencia de los exones que contenían mayor número de mutaciones (hotspot) (tabla 6), de acuerdo con la base de datos COSMIC http://cancer.sanger.ac.uk/cosmic. Los protocolos de amplificación se estandarizaron en termocicladores de 96 pozos BIORAD C1000®, con Mytaq, siguiendo los protocolos de termociclado estandarizados (tabla 7). Todas las reacciones tenían montado un control negativo y uno positivo, y se verificó la amplificación en geles de agarosa al 1,5%. Al verificar la amplificación, se procedió a aplicar el método de purificación del producto de amplificación ExoSap; se realizó la purificación mezclando 5 µl de producto de PCR y 2 µl de ExoSAP-IT (Affymetrix), se incubó a 37°C por 15 minutos, y a 80°C por 15 minutos. Posteriormente, se envió los productos limpios a secuenciación, a la Facultad de Secuenciamento de ADN de la Universidad de California-Davis (UCDNA Sequencing Faculty), en donde se utilizó el sistema de secuenciamento ABI BigDye Terminator v3.1. El análisis de las secuencias se realizó en el programa Chromas Lite versión 2.1.1 (Copyright 1998-2013 Technelysium Pty Ltd), con las secuencias de referencia publicadas en el Genome Browser https://genome.ucsc.edu/cgi-bin/, cuyos códigos de acceso son: NM_000038(APC), NM_ 004985 (KRAS) y NM_000546 (TP53), BRAF NM_004333, de acuerdo con las recomendaciones de NCCN (National Comprehensive Cancer Network) (NCCN, 2014).
Tabla 6. Cebadores y secuencias para amplificación de APC, KRAS, BRAF y TP53

<table>
<thead>
<tr>
<th>Primers BRAF</th>
<th>Tm</th>
<th>Tamaño total del producto: 213pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 5’-AGAAATTAGATCTCTTACCTA-AACT-3’</td>
<td>50.9 °C</td>
<td></td>
</tr>
<tr>
<td>R: 5’-TTACCATCCACAAAAATGGA-3’</td>
<td>54.7 °C</td>
<td></td>
</tr>
</tbody>
</table>

Secuencia ADN genómico: **BRAF**

GAC 587
GTG 600

<table>
<thead>
<tr>
<th>Primers</th>
<th>Tm</th>
<th>Tamaño total del producto: 204pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 5’-GGGACAGGTAGGACCTGATT-3’</td>
<td>57.9 °C</td>
<td></td>
</tr>
<tr>
<td>R: 5’-TGCTTACCTCGCTTAGTGCT-3’</td>
<td>58.0 °C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primers</th>
<th>Tm</th>
<th>Tamaño total del producto: 213pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 5’-CTGCCCTCAACAAGATGTTT-3’</td>
<td>57.8 °C</td>
<td></td>
</tr>
<tr>
<td>R: 5’-ACCAGCCCTGTCGTCTCTCTCT-3’</td>
<td>58.3 °C</td>
<td></td>
</tr>
</tbody>
</table>

Secuencia ADN genómico:
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

CTGCCCTCAACAAGATTTTGGCCAACAGCTGCTCCTGTGCA-GCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATG-GCCATCTACAAGCAGTCAGACAGCACAGGGAGGTTGTTGAGGGCGCT-GCCCCCAACCAGACGCTGCTCAGATAGCGATGGTGAGCAGCTGGGGCTG-GAGAGACGAGTG

Mutación de interés: EXON 5 CODON 175 524G>A → R175H o 524G>T → R175L, o 524G>C → R175P

<table>
<thead>
<tr>
<th>Primers</th>
<th>Tm</th>
<th>Tamaño total del producto: 225pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:5’- TTCATTATCATCTTTTGTCTACGAGC-3’</td>
<td>58.3 °C</td>
<td></td>
</tr>
<tr>
<td>R:5’- TTGTGCCTGGCTGATTCTT-3’</td>
<td>57.8 °C</td>
<td></td>
</tr>
</tbody>
</table>

Secuencia ADN genómico:

TTCATTATCATCTTTTGTCTACGAGATGAAATAGGATGTAATCAGAC-GACACAGGAAGCAGATCTGCTAATACCCCTGCAAATGCGAATAAAA- GAAAGATTGGAACACTAGTCAGCTAGAGATCTGTCAGGCGAAAGTTCACCAG-CAGTGTCACACCCGGCTAGAACGAGAGCAGACTGCAGGGTTCTAGT-TTATCTCAGAATCAGCAGCCAGCCAA

Mutación de interés: **APC** p.E1309* / c.3925G>T

<table>
<thead>
<tr>
<th>Primers</th>
<th>Tm</th>
<th>Tamaño total del producto: 227pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 5’- AGTGAACCATGCGATGGAAAT-3’</td>
<td>58.0 °C</td>
<td></td>
</tr>
<tr>
<td>R: 5’- AGAACCTGGACCCTCTG-3’</td>
<td>58.2 °C</td>
<td></td>
</tr>
</tbody>
</table>

Secuencia ADN genómico:

AGTGAACCATGCGATGGAAATGGGTGAAATCAGCAATCAATCCCTGCAAATAGCAGAATAAAA-CACCTCCACCACCTCTCACCACGCTCAAACCCAAGCGAGAAATCGACC-TAAAAATAAGCAGCCTCTAATCGTCAAAAGAGAGAGATGAGCTCCTAAGCAGAA-GCTGCAGATGGAAGGTGTAGGTTGTCAGAGGGTCT

Mutación de interés: **APC** p.R1450* / c.4348C>T

<table>
<thead>
<tr>
<th>Primers</th>
<th>Tm</th>
<th>Tamaño total del producto: 221pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:5’- AACCTTATGTGACATGTTC-TAA-3’</td>
<td>55.5 °C</td>
<td></td>
</tr>
</tbody>
</table>
R: 5’-AATGGTCTGCACCAGTAAT-3’ 57°C

Secuencia ADN genómico:

AACCTTATGTGTGACATGTTCATATAATATGTCACATTTCATTTTTATTA- TAAGGCTCTCTGAAAAATGACTGAATATAAATTTGTGGGTAGTGGGAGCTG- GTGGCCGTAGGCAAGATGTGCCTTGACGATACAGCTAATTTGAGATTTCATTTT- GTGGACGAATATGATCTCAAAACAAATAGAGGTAAAATCTGTGTTTTATAATATGCA- TTTCTGGTGACGACCATT

Codones de interés: 12 y 13 GGTGTC

13 Y 12 TACGCCACCAGC

Fuente: los autores

Tabla 7. Protocolo para amplificación de genes APC, KRAS, BRAF y TP53

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen µl</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>DH20</td>
<td>3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>ADN</td>
<td>5</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Total reacción</td>
<td>Vf= 20</td>
<td>Vf= 15</td>
<td></td>
</tr>
</tbody>
</table>

Protocolo de Amplificación - My taq mix

Denaturación inicial 95°C por 5 min
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen µl</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>DH20</td>
<td>3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>ADN</td>
<td>5</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Total reacción</td>
<td>Vf= 20</td>
<td>Vf= 15</td>
<td></td>
</tr>
</tbody>
</table>

Condiciones de amplificación - My taq mix

<table>
<thead>
<tr>
<th>Denaturación inicial</th>
<th>95°C por 5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturación</td>
<td>94°C por 1 min</td>
</tr>
<tr>
<td>Alineamiento</td>
<td>57°C por 1 min</td>
</tr>
<tr>
<td>Extensión</td>
<td>72°C por 1 min</td>
</tr>
<tr>
<td>Extensión final</td>
<td>71°C por 10 min</td>
</tr>
<tr>
<td>Conservar a</td>
<td>12°C</td>
</tr>
</tbody>
</table>

TP53 273

Cebadores: Tm

F:5’-GGGACAGGTAGGACCTGATT-3’ Tm F: 57.9 °C
R:5’-TGCTTACCTCGCTTAGGTGCT-3’ Tm R: 58.0 °C

Product Size: 204 bp

Protocolo de Amplificación - My taq mix

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 µM</td>
<td>1</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 µM</td>
<td>1</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
</tr>
<tr>
<td>DH20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ADN</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total reacción</td>
<td>Vf= 20</td>
<td></td>
</tr>
</tbody>
</table>

Condiciones de amplificación - My taq mix

<table>
<thead>
<tr>
<th>Denaturación inicial</th>
<th>95°C por 5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturación</td>
<td>94°C por 1 min</td>
</tr>
<tr>
<td>Alineamiento</td>
<td>57°C por 1 min</td>
</tr>
<tr>
<td>Extensión</td>
<td>72°C por 1 min</td>
</tr>
<tr>
<td>Extensión final</td>
<td>71°C por 10 min</td>
</tr>
<tr>
<td>Conservar a</td>
<td>12°C</td>
</tr>
</tbody>
</table>

TP53 175

Cebadores: Tm

F:5’-CTGCCCTCAACAAAGATGTTT-3’ Tm F: 57.8 °C Product Size: 213 bp
R:5’-ACCAGCCCTGTCGTCTCT-3’ Tm R: 58.3 °C

Protocolo de Amplificación - My taq mix
Materiales y métodos

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen μl</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 μM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 μM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>DH20</td>
<td></td>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>ADN</td>
<td></td>
<td>5</td>
<td>3,7</td>
</tr>
<tr>
<td>Total reacción</td>
<td></td>
<td>Vf= 20</td>
<td>Vf= 15</td>
</tr>
</tbody>
</table>

Condiciones de amplificación - My taq mix

- **Denaturación inicial**: 95°C por 5 min
- **Denaturación**: 94°C por 1 min
- **Alineamiento**: 57°C por 1 min
- **Extensión**: 72°C por 1 min
- **Extensión final**: 71°C por 10 min
- **Conservar a**: 12°C

APC 1378 / c.4132C>T

<table>
<thead>
<tr>
<th>Cebadores</th>
<th>Tm</th>
<th>Product Size</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:5'- GGCACAAAGCTGTGTTATTT-3'</td>
<td>57.9 °C</td>
<td>Product Size: 225</td>
<td>bp</td>
</tr>
<tr>
<td>R:5'- ATCCACTGAGTGGTCCACT-3'</td>
<td>58.0 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protocolo de Amplificación - My taq mix

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen μl</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 μM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 μM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>DH20</td>
<td></td>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>ADN</td>
<td></td>
<td>5</td>
<td>3,7</td>
</tr>
<tr>
<td>Total reacción</td>
<td></td>
<td>Vf= 20</td>
<td>Vf= 15</td>
</tr>
</tbody>
</table>

Condiciones de amplificación - My taq mix

- **Denaturación inicial**: 95°C por 5 min
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

38 ciclos
Denaturación 94°C por 1 min
Alineamiento 57°C por 1 min
Extensión 72°C por 1 min
Extensión final 71°C por 10 min
Conservar a 12°C

APC 1450 / c.4348C>T

Cebadores Tm

F: 5’- AGTGAACCATGCAGTGGAAT-3’ 58.0 °C
R: 5’- AGAACCTGGACCTCTGAAC-3’ 58.2 °C

Protocolo de Amplificación - My taq mix

<table>
<thead>
<tr>
<th>Componente</th>
<th>Unidades</th>
<th>Volumen µl</th>
<th>Volumen µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebador F</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Cebador R</td>
<td>10 µM</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>MyTaq mix</td>
<td>2X</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>DH20</td>
<td>3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>ADN</td>
<td>5</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Total reacción</td>
<td>Vf= 20</td>
<td>Vf= 15</td>
<td></td>
</tr>
</tbody>
</table>

Condiciones de amplificación - My taq mix

Denaturación inicial 95°C por 5 min

38 ciclos
Denaturación 94°C por 1 min
Alineamiento 58°C por 1 min
Extensión 72°C por 1 min
Extensión final 71°C por 10 min
Conservar a 12°C

KRAS

Cebadores Tm

F: 5’- AACCTTATGTGTGACAT-GTTCTAA-3’ 55,5
R: 5’- AATGGTCCTGCACTCAGTAAT-3’ 57 Producto: 221bp
2.7. Amplificación y secuenciación de genes para el sistema ion torrent

Para la obtención de tejidos frescos, tomados inmediatamente después de la resección del colon, se contó con la colaboración del Genome Center del Wellcome Center for Human Genetics de la Universidad de Oxford. Para realizar la amplificación y secuenciación se usó la plataforma Ion Torrent™ (https://www.thermofisher.com/co/en/home/life-science/sequencing.html). Este método de secuenciación de nueva generación utiliza arreglos “chip” semiconductores PGM™ y Proton™, solo se usan 10 nanogramos de ADN. La tecnología Ion Ampliseq™, construye, en primera instancia, una librería con las secuencias blanco para genes o regiones génicas específicas, usando un panel de 6.144 pares de cebadores (Ion...
AmpliSeq™ Cancer Hotspot Panel v2). La librería completa tiene además los códigos de barras y las secuencias necesarias para la secuenciación. El sistema de templado se denomina OneTouch™. Cuando la secuenciación esta completa, los análisis de datos se realizan en el programa Torrent Suite versión 4.4, y las anotaciones con análisis automatizado, mediante el programa Ion Reporter™. Las mutaciones somáticas con una cobertura > 100 y un valor p < 0.05 se incluyeron en el análisis.

2.8. Análisis estadístico

Toda la información consignada en las entrevistas y el reporte de patología se tabuló en una hoja de cálculo de Excel, teniendo en cuenta las variables de edad, género, diagnóstico clínico, localización, tipo de resección, tipo de tumor, estado TNM, número de ganglios linfáticos reportados y presencia de pólipos y tumores sincrónicos o metacrónicos. Posteriormente, se incorporaron los datos moleculares de MSI, IHC y las variantes génicas, tanto para familias como para pacientes. El primer análisis fue básico, descriptivo. La comparación de variables cualitativas se realizó mediante el análisis de tablas de contingencia, utilizando el estadístico de chi-cuadrado (X2). A todos los casos se les aplicó el test de dos colas, utilizando los algoritmos disponibles en las paginas web de estadística computacional gratuita VassarStats http://vassarstats.net/ o el software R versión 3.1.0: http://www.r-project.org/, para el tipo de tumor, con las variables: edad, género, localización, tipo de resección y número de ganglios afectados. Antes de la realización de los modelos multinomiales se aplicaron análisis de componentes principales en R. Los análisis de asociación para los pacientes con antecedentes familiares de cáncer incluyeron Odds ratio (OR) http://vassarstats.net/, para establecer la relación entre variables cualitativas, teniendo en cuenta el grupo etario menor o mayor de 50 años y el tipo histológico del cáncer. Se realizó un análisis multivariado para los resultados de genes de tejido incluido en parafina (FFPE) y para los genes del tejido fresco, mediante regresión logística, con el programa R. En todos los contrastes de hipótesis, la hipótesis nula estableció que no existen diferencias entre los grupos, y fue rechazada cuando el error tipo I o error alfa fue menor de 0.05.
Capítulo 3

RESULTADOS
3.1. Características de la muestra

3.1.1. Región, ciudad de procedencia

En el número total de pacientes, se incluyeron aquellos con reporte de patología de neoplasia maligna, se excluyeron del análisis los pólipos adenomatosos, hiperplásicos o hamartomatosos, que representaron el 0,9% de los casos, habiendo quedado un total de 1.278 casos para el análisis. En la tabla 8 se aprecia la relación de los pacientes captados en las diferentes regiones del país, por razones de logística y convenios.

<table>
<thead>
<tr>
<th>Región</th>
<th>Casos N</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nor- Occidente</td>
<td>308</td>
<td>24,1</td>
</tr>
<tr>
<td>Centro</td>
<td>338</td>
<td>26,4</td>
</tr>
<tr>
<td>Nor – oriente</td>
<td>380</td>
<td>29,7</td>
</tr>
<tr>
<td>Norte</td>
<td>135</td>
<td>10,6</td>
</tr>
<tr>
<td>Sur</td>
<td>117</td>
<td>9,2</td>
</tr>
<tr>
<td>Total</td>
<td>1278</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: los autores

Las ciudades escogidas son todas capitales, a las cuales se remiten los diferentes pacientes para diagnósticos y tratamientos definitivos. Las de mayor número de pacientes son Medellín (29%), Ibagué (21%) y Bogotá (18%), lo cual obedece, entre otras causas, al hecho de que en estas ciudades se contó con un mayor apoyo logístico del cuerpo médico y con alianzas institucionales, tal es el caso del INC y de los Hospitales Federico Lleras Acosta, de Ibagué, y Pablo Tobón Uribe, de Medellín, alianzas que no
siempre son fáciles de coordinar. En la figura 3 se pueden observar todas las ciudades en las que se vincularon pacientes al estudio.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{CCR: Distribución por Ciudad}
\label{fig:fig3}
\end{figure}

Fuente: los autores

3.1.2. Género y edad

El CCR se presentó en 680 pacientes del género femenino (53,2%) y en 598 hombres (46,8%) (tabla 9 y figura 4). Las ciudades con mayor número de pacientes presentan una ligera proporción mayor de mujeres; Medellín 15,8% de mujeres contra 13% de hombres; similar en Ibagué con 11,6% y 9,7%, respectivamente. En las ciudades con menor cantidad de pacientes la diferencia fue proporcionalmente inferior.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{CCR: Distribución por género y ciudad}
\label{fig:fig4}
\end{figure}

Fuente: los autores
La distribución por grupo etario evidenció que el 30,8% (n=394) de los pacientes tenía entre 60 y 69 años, y el 27,2% (n=347) entre 50 y 59 años (figura 5). Sin embargo, llama la atención que 339 pacientes (26,5%) presentaron CCR con 50 años o menos de edad. (Tabla 9).

Figura 5. CCR: Distribución por grupo etario

Fuente: los autores

La media para la edad fue de 57,43 años (rango 19-93), comportándose de manera similar en todas las ciudades; la edad media para las mujeres fue de 56,95 años (rango 19-90), para los hombres 57,98 años (rango 20-93). (Tabla 9).

Tabla 9. CCR: Parámetros clínico-patológicos

<table>
<thead>
<tr>
<th>Característica</th>
<th>Pacientes n=1.278</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad de inicio del cáncer (años) (rango)</td>
<td>57,43 (19-93)</td>
</tr>
<tr>
<td>Mujeres (rango)</td>
<td>56,95 (19-90)</td>
</tr>
<tr>
<td>Hombres (rango)</td>
<td>57,98 (20-93)</td>
</tr>
<tr>
<td>Edad ≤ 50 años</td>
<td>339 (26,5)</td>
</tr>
<tr>
<td>Edad > 50 años</td>
<td>939 (73,5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Género</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mujer</td>
<td>680 (53,2)</td>
</tr>
<tr>
<td>Hombre</td>
<td>598 (46,8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localización</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal</td>
<td>254 (19,9)</td>
</tr>
<tr>
<td>Distal</td>
<td>279 (21,8)</td>
</tr>
</tbody>
</table>
3.1.3. Aspectos clínico-patológicos

3.1.3.1. Distribución anatómática

La localización del tumor se presentó con mayor frecuencia en el recto con 397 pacientes (42,6%), seguida por la región distal (30%) y de la proximal (27,3%) (porcentajes que tienen en cuenta únicamente los casos con el dato de localización). Si se tienen en cuenta todos los casos, y cada una de las partes del colon, sigue predominando el recto como localización más frecuente, figura 6.

![Figura 6. CCR: Distribución anatómica detallada.](#)

Fuente: los autores
3.1.3.2. Tipo histológico

El tipo de tumor más frecuente fue el adenocarcinoma, 91,5% de los casos (1.170 pacientes), seguido del carcinoma mucinoso, 5,2% y del carcinoma con células en anillo de sello, 1,6%. Otros tipos de cáncer, incluidos los carcinomas escamoscelulares, representaron el 1,6%. (Tabla 9). La mayoría de los tumores 72,6% presentaron bajo grado histológico.

El análisis descriptivo de las variables clínicas respecto al tipo de tumor se pueden apreciar en la tabla 10.

Tabla 10. Análisis descriptivo, variables clínicas

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adenocarcinoma</th>
<th>Anillo de sello</th>
<th>Mucinoso</th>
<th>Otro</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Género</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femenino</td>
<td>619</td>
<td>9</td>
<td>35</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>551</td>
<td>11</td>
<td>32</td>
<td>4</td>
<td>0,05</td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menor de 50</td>
<td>289</td>
<td>12</td>
<td>33</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mayor de 50</td>
<td>880</td>
<td>8</td>
<td>34</td>
<td>16</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de masa corporal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>365</td>
<td>4</td>
<td>18</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Sobrepeso</td>
<td>115</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obesidad</td>
<td>235</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>0,647</td>
</tr>
<tr>
<td>Consumo de bebidas alcohólicas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>463</td>
<td>12</td>
<td>34</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>503</td>
<td>6</td>
<td>24</td>
<td>7</td>
<td>0,83</td>
</tr>
<tr>
<td>Fumar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>459</td>
<td>9</td>
<td>28</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>429</td>
<td>9</td>
<td>26</td>
<td>4</td>
<td>0,701</td>
</tr>
<tr>
<td>Localización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>223</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Distal</td>
<td>255</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Se encontraron diferencias significativas cuando se comparó el tipo de tumor con la edad en rangos (menor o mayor de 50 años) \((p=0,000)\) y la localización del tumor \((P=0,011)\). Con el análisis estadístico de correspondencia simple fue posible asociar a los pacientes menores de 50 años con los carcinomas mucinosos y anillo de sello, y con la localización distal y recto; a los pacientes mayores de 50 años con el adenocarcinoma no especial o usual y la localización proximal. Figuras 7 y 8.
3.1.3.3. Síntomas

Los pacientes ingresados al estudio no fueron sometidos a ningún procedimiento de tamizaje diagnóstico. Simplemente, asistieron al servicio médico porque presentaron algún tipo de síntoma relacionado, como...
pérdida de peso, sangrado rectal, cambio del hábito intestinal, anemia o dolor abdominal; el 67,1% de los pacientes presentó hasta dos de estos síntomas y el 32,9% más de tres. No se encontraron diferencias significativas al comparar con otras variables.

3.1.3.4. Factores de riesgo

Índice de masa corporal (IMC): el 50,8% presentó normalidad, 15,6% sobrepeso y 33,6% obesidad (p=0,647). Consumo de bebidas alcohólicas: 51% consumían alcohol (cada fin de semana) y el 49% no bebían alcohol (p=0,83). Tabaquismo: 52% eran fumadores y 48% no lo eran (p=0,7). No se encontraron diferencias significativas entre los grupos para estas variables.

3.1.3.5. Estado TNM

Se realizó una clasificación dependiendo de si al momento del reclutamiento los pacientes habían sido o no sometidos a resección del tumor. En 735 (57,5%) se contó solo con la información del resultado de la biopsia, y para 543 (42,5%) se tenía información sobre la resección colónica. El resto de las variables solo se evaluaron en los pacientes sometidos a colectomía (subtotal o total). Tabla 11.

De 543 pacientes con resección colónica, 286 (52,7%) fueron mujeres, y 257 (47,3%) hombres; 381 pacientes (70,2%) eran mayores de 50 años, y 162 (29,8%) menores de 50 años.

En cuanto al tipo de tumor, en los pacientes colectomizados, 476 (87,7%) presentaron adenocarcinomas, y 54 (9,9%), tumores mucinosos. El tipo más frecuente de resección fue la hemicolecctomía izquierda con 42,7% (232 pacientes), seguida de la colectomía derecha 27,8% (151) y la proctocolectomía con 144 casos (26,5%). Se reportaron 16 mucosectomías (2,9%). Los detalles se aprecian en la tabla 11.

<table>
<thead>
<tr>
<th>Tabla 11. CCR: Pacientes con resección colónica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Característica</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Edad ≤ 50 años</td>
</tr>
<tr>
<td>Edad > 50 años</td>
</tr>
<tr>
<td>Género</td>
</tr>
<tr>
<td>Mujer</td>
</tr>
<tr>
<td>Característica</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Hombre</td>
</tr>
<tr>
<td>Tipo de resección</td>
</tr>
<tr>
<td>Hemicolectomía derecha</td>
</tr>
<tr>
<td>Hemicolectomía izquierda</td>
</tr>
<tr>
<td>Proctocolectomía</td>
</tr>
<tr>
<td>Mucosectomía</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de tumor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma (NOS)</td>
<td>476 (87,7)</td>
</tr>
<tr>
<td>Carcinoma mucinoso</td>
<td>54 (9,9)</td>
</tr>
<tr>
<td>Carcinoma con células en anillo de sello</td>
<td>9 (1,6)</td>
</tr>
<tr>
<td>Otros (escamoso, neuroendocrino, etc)</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Poliposis múltiple</td>
<td>3 (0,6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM = Tamaño del tumor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tis, T0, T1,T2</td>
<td>103 (19)</td>
</tr>
<tr>
<td>T3,T4</td>
<td>408 (75,1)</td>
</tr>
<tr>
<td>Sin dato</td>
<td>32 (5,9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM = número de ganglios linfáticos afectados</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguno</td>
<td>39 (7,2)</td>
</tr>
<tr>
<td>1 o más</td>
<td>379 (69,8)</td>
</tr>
<tr>
<td>Sin dato</td>
<td>125 (23)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM tumor + ganglios afectados</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temprano (0,I,II)</td>
<td>290 (53,4)</td>
</tr>
<tr>
<td>Avanzado (III,IV)</td>
<td>198 (36,5)</td>
</tr>
<tr>
<td>Sin dato</td>
<td>55 (10,1)</td>
</tr>
</tbody>
</table>

Fuente: los autores

Para el análisis del estado tumoral (pTNM), se evaluó el tamaño del tumor (T), categorizando el Tis (carcinoma in situ), en estados T0, T1 y T2, como tumores tempranos; y los estados T3 y T4 como avanzados, presentándose 75,1% de los casos en estados T avanzados y el 19% en estados T tempranos. El comportamiento del tamaño del tumor fue similar en los diferentes grupos etarios, como se puede observar en la figura 9.
Si analizamos el estado N (ganglios linfáticos comprometidos), el 7,2% no reportó ganglios afectados por el tumor, y el 69,8% reportó uno o más ganglios comprometidos. Si se asocian los estados T y N, los casos avanzados corresponden al 36,5% de los casos y los tempranos al 53,4%; lo cual no se correlaciona con el tamaño del tumor. (Tabla 9). Dada esta discordancia, se evaluó el número de ganglios examinados en cada caso, encontrando que la media reportada fue de 10,69 ganglios, que la mitad de los casos (50,1%) reportó menos de 13 ganglios linfáticos estudiados, y solo el 26,9% de los casos reportó más de 13 ganglios linfáticos. (Figura 10). El mayor número de ganglios informado fue de 71.

Figura 9. CCR: Distribución Tamaño del tumor – Rango de edad

Fuente: los autores
Las diferentes proporciones se obtuvieron dividiendo a los pacientes en dos grupos: los de 50 años o menos (grupo I), y aquellos mayores de 51 años (grupo II). Los resultados muestran diferencias significativas entre las proporciones de los grupos ($p<0,005$). Se observa que los menores de 50 años tienen una proporción más alta de CCR a nivel del recto, con los tipos histológicos mucinoso y anillo de sello, y con los estados tumorales avanzados. Tabla 12.
Tabla 12. Proporciones: Edad – Tumor (tipo, localización, tamaño)

<table>
<thead>
<tr>
<th>Grupo</th>
<th>N Casos</th>
<th>Edad media</th>
<th>Localización</th>
<th>Tipo de tumor</th>
<th>TNM tamaño del tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proximal</td>
<td>Distal</td>
<td>Recto</td>
</tr>
<tr>
<td>I</td>
<td>340</td>
<td>41,3</td>
<td>57 (16,8)</td>
<td>80 (23,5)</td>
<td>133 (39,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70 (20,6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>290 (85,3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33 (9,7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 (3,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 (1,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 (7,01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>135 (39,7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>181 (53,2)</td>
</tr>
<tr>
<td>II</td>
<td>938</td>
<td>57,43</td>
<td>197 (21)</td>
<td>199 (21)</td>
<td>265 (28,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>277 (29,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>880 (94)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 (3,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 (0,8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 (1,7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88 (9,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>302 (32,2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>548 (58,3)</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,00008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,000039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,001577</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,000001</td>
</tr>
</tbody>
</table>

Fuente: los autores
3.1.4. Antecedentes familiares de cáncer

Un total de 155 pacientes (12,12%) reportaron antecedentes familiares de cáncer en primer y segundo grado; el 62,2% eran mujeres y un 37,4% hombres, 57 pacientes con antecedentes de cáncer fueron menores de 50 años. Tabla 13.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Pacientes (%) n=155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad ≤ 50 años</td>
<td>59 (38,1)</td>
</tr>
<tr>
<td>Edad > 50 años</td>
<td>96 (61,9)</td>
</tr>
<tr>
<td>Edad promedio (rango)</td>
<td>52,7 (19 - 84)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Género</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mujer</td>
<td>97 (62,6)</td>
</tr>
<tr>
<td>Hombre</td>
<td>58 (37,4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Tumor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>141 (91)</td>
</tr>
<tr>
<td>Carcinoma mucinoso</td>
<td>14 (9)</td>
</tr>
</tbody>
</table>

Fuente: los autores

Entre los casos asociados con síndromes de agregación familiar se reportaron tres de CCR sincrónico, cuatro de CCR metacrónico; dos pacientes presentaron carcinoma de glándula mamaria; uno, carcinoma de tiroides; uno, carcinoma de células transicionales; y uno, carcinoma de endometrio.

Se realizó el análisis de los pacientes que además de CCR presentaron pólipos de tipo adenomatoso, encontrando que 70 pacientes (5,5%) reportaron entre uno y cinco pólipos asociados; siete (0,55%), entre cinco y 10 pólipos; y ocho (0,6%), más de 50 pólipos. De estos 85 pacientes, el 31% (26) reportó antecedentes familiares de CCR o cáncer, las últimas dos categorías están asociadas a los síndromes polipósicos familiares.

Se encontraron diferencias significativas cuando se comparó el tipo de tumor con la edad (p=0,000) y con el género (p=0,05). Al comparar los
pacientes con y sin antecedentes de cáncer, se encontró que las mujeres con antecedentes familiares se asocian con un riesgo mayor (1,55) de presentar la enfermedad. De igual manera, los menores de 50 años con antecedentes de cáncer en familiares de primer grado se asocian con un riesgo mayor (1,85) de padecer CCR, mientras la presencia de adenomas y antecedentes familiares tiene un riesgo de 3,22 de padecer la enfermedad. Tabla 14.

Tabla 14. Comparación del riesgo, de acuerdo con el género, la edad y la presencia de adenomas.

<table>
<thead>
<tr>
<th>Pacientes CCR</th>
<th>Con antecedentes familiares</th>
<th>Sin antecedentes</th>
<th>Odds Ratio (Cl 95%)</th>
<th>Valor P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hombres</td>
<td>58 (37,5%)</td>
<td>540 (48,1%)</td>
<td>1,549 (1,096 - 2,189)</td>
<td>0,012632</td>
</tr>
<tr>
<td>Mujeres</td>
<td>97 (62,5%)</td>
<td>583 (51,9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>50 años</td>
<td>96 (61,9%)</td>
<td>843 (75,1%)</td>
<td>1,850 (1,302 - 2,629)</td>
<td>0,000518</td>
</tr>
<tr>
<td>≤50 años</td>
<td>59 (38,1%)</td>
<td>280 (24,9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adenomas</td>
<td>129 (83%)</td>
<td>1057 (94,1%)</td>
<td>3,227 (1,978 - 5,265)</td>
<td><0,0001</td>
</tr>
<tr>
<td>Adenomas</td>
<td>26 (17%)</td>
<td>66 (5,9%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: los autores

Al realizar las comparaciones de las características clínico-patológicas entre los grupos de inicio temprano de CCR (menores de 50 años), con los de inicio tardío (51 años en adelante), se encontraron diferencias significativas en las variables género (p=0,009) e historia familiar de cáncer (0,000518). Ver tabla 15. No se encontraron diferencias significativas con los datos de resección colónica.
Tabla 15. Comparaciones características clinicopatológicas – edad de inicio

<table>
<thead>
<tr>
<th>Característica</th>
<th>N=1,278 (%)</th>
<th>Edad de diagnóstico</th>
<th>Dos colas</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inicio temprano (≤50)</td>
<td>Inicio tardío (>50)</td>
<td>Nº de casos (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Género</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>598 (46,8)</td>
<td>138 (40,7)</td>
<td>460 (48,9)</td>
<td>0,009</td>
</tr>
<tr>
<td>Femenino</td>
<td>680 (53,2)</td>
<td>201 (59,3)</td>
<td>479 (51,1)</td>
<td></td>
</tr>
<tr>
<td>Número de síntomas reportados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 y 2</td>
<td>512 (40,1)</td>
<td>163 (69,1)</td>
<td>349 (66,3)</td>
<td>0,440</td>
</tr>
<tr>
<td>3 y más</td>
<td>251 (19,6)</td>
<td>73 (30,9)</td>
<td>178 (33,7)</td>
<td></td>
</tr>
<tr>
<td>Sin dato</td>
<td>515 (40,3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historia familiar de cáncer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausente</td>
<td>1123 (87,9)</td>
<td>280 (24,9)</td>
<td>843 (75,1)</td>
<td>0,000518</td>
</tr>
<tr>
<td>Presente</td>
<td>155 (12,1)</td>
<td>59 (38,1)</td>
<td>96 (61,9)</td>
<td></td>
</tr>
<tr>
<td>Localización</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>254 (19,9)</td>
<td>57 (21,1)</td>
<td>197 (29,8)</td>
<td>0,012</td>
</tr>
<tr>
<td>Distal</td>
<td>279 (21,8)</td>
<td>81 (30)</td>
<td>199 (30,1)</td>
<td></td>
</tr>
<tr>
<td>Recto</td>
<td>398 (31,1)</td>
<td>132 (48,9)</td>
<td>265 (40,1)</td>
<td></td>
</tr>
<tr>
<td>Sin dato</td>
<td>347 (27,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo histológico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma (NOS)</td>
<td>1170 (91,5)</td>
<td>289 (83,5)</td>
<td>881 (93,8)</td>
<td></td>
</tr>
<tr>
<td>Carcinoma mucinoso</td>
<td>67 (5,2)</td>
<td>33 (9,7)</td>
<td>34 (3,6)</td>
<td>0,000</td>
</tr>
<tr>
<td>Carcinoma – células en anillo de sello</td>
<td>20 (1,6)</td>
<td>12 (3,5)</td>
<td>8 (0,9)</td>
<td></td>
</tr>
<tr>
<td>Otros (escamoso, neuroendocrino, etc.)</td>
<td>21 (1,6)</td>
<td>5 (1,5)</td>
<td>16 (1,7)</td>
<td></td>
</tr>
<tr>
<td>Inmunohistoquímica – MLH1</td>
<td>N= 275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>248 (90,1)</td>
<td>71 (94,6)</td>
<td>177 (88,5)</td>
<td>0,126</td>
</tr>
<tr>
<td>Negativo</td>
<td>27 (9,9)</td>
<td>4 (5,4)</td>
<td>23 (11,5)</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: los autores
El análisis multivariado mostró asociaciones positivas de los pacientes con CCR de inicio temprano (menores de 50 años) con el género femenino (riesgo 1,3 veces mayor), localización en el recto (riesgo 1,7 veces mayor), tipo de tumor mucinoso (riesgo 4,55 veces mayor) y tipo de tumor anillo de sello (riesgo 2,9 veces mayor). También se encontraron asociaciones positivas del tamaño avanzado con el estado ganglionar alto, los hombres y los jóvenes (menores de 50 años). Ver tabla 16. No se evidenciaron asociaciones con las demás variables.

Tabla 16. Análisis multivariado características clínico-patológicas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>OR</th>
<th>IC 95%</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad(<50 - >50) ~ Género(femenino - masculino)</td>
<td>1,373</td>
<td>1,096 - 1,766</td>
<td>0,013</td>
</tr>
<tr>
<td>Edad(<50 - >50) ~ Localización (D - I - R)</td>
<td>1,754</td>
<td>1,228 - 2,529</td>
<td>0,002</td>
</tr>
<tr>
<td>Edad(<50 - >50) ~ Tipo de tumor: mucinoso</td>
<td>4,552</td>
<td>1,865 - 11,772</td>
<td>0,001</td>
</tr>
<tr>
<td>Edad(<50 - >50) ~ Tipo de tumor: anillo de sello</td>
<td>2,945</td>
<td>1,787 - 4,849</td>
<td>2,05E-05</td>
</tr>
<tr>
<td>Tamaño avanzado ~ género masculino</td>
<td>2,822</td>
<td>1,322 - 6,336</td>
<td>0,009</td>
</tr>
<tr>
<td>Tamaño avanzado ~ Edad(<50 - >50)</td>
<td>3,326</td>
<td>1,279 - 6,336</td>
<td>0,022</td>
</tr>
<tr>
<td>Tamaño avanzado ~ estado ganglionar</td>
<td>3,692</td>
<td>1,377 - 11,818</td>
<td>0,0153</td>
</tr>
</tbody>
</table>

Fuente: los autores

3.1.5. Inmunohistoquímica para MLH1 - IHC

Un total de 575 casos tenían representación suficiente en el bloque de parafina de tumor y normal en sitios cercanos; se les realizó inmunohistoquímica para MLH1. 155 casos (27%) no fueron evaluables, las causas más recurrentes fueron: se agotó el tumor en el tejido, se presentaban defectos de fijación, la tinción fue débil en el tumor, no hubo
tinción del control interno, el tumor era diferente a un adenocarcinoma; 379 casos (66%) presentaron positividad para la expresión de la proteína; y 41 (7%) presentaron negatividad en la expresión de la proteína. Figura 11.

Figura 11. CCR: Evaluación inmunohistoquímica para MLH1

![Diagrama de barras para MLH1](image)

Fuente: los autores

El análisis de comparaciones de los resultados en IHC con las variables clínico-patológicas mostró diferencias significativas en dos variables: la localización del tumor (p=0,000) y la IHC negativa para MLH1, asociándose la pérdida de la expresión de MLH1 con la localización en el colon derecho 22 casos (81,5%), contra 5 (18,5%) del colon izquierdo, y ningún caso en el recto.

Se realizó la comparación entre los resultados de IHC en biopsia, contra los especímenes de resección colónica, encontrándose diferencias estadísticas (p=0,025). La mayoría de casos presentó pérdida de la expresión de MLH1 en las colectomías (21 casos, 78%), contra de las biopsias (6 casos, 22%). No se presentaron diferencias entre los grupos con las demás variables.
3.2. Perfil molecular CCR somático

3.2.1. Inestabilidad microsatelital – MSI

En un total de 451 casos fue posible obtener ADN en cantidad y calidad suficientes para realizar estas pruebas. En la figura 12 se pueden apreciar dos ejemplos de electroferogramas analizados de un caso MSI-H y un caso MSS.

En el 24,83% de los casos, uno o más de los marcadores MSI no amplificaron, razón por la cual no fueron analizados. En el 9,76% de los casos no se lograron amplificar los marcadores en el tejido normal, por lo que no se pudo comparar con el tumor. El 22,60% (102 pacientes), presentaron alta inestabilidad microsatelital (MSI-H); el 11% (49 pacientes), baja inestabilidad microsatelital (MSI-L); y el restante 31,93% tenían los microsatélites estables (MSS). Figura 13. Los pacientes con MSI+(L, H) presentaron un promedio de edad de 58,5 años (19 – 93 años).

Eje X: producto PCR, pares de bases. Eje Y: intensidad de la señal. Fuente: los autores

Figura 12. CCR: Electroferogramas análisis MSI

Fuente: los autores.
Parámetros obtenidos a partir del análisis de la inestabilidad microsatelital (MSI) y el análisis inmunohistoquímico de MLH1:

1. MSI-H
- Sensibilidad: 71% (CI: 49 - 87)
- Especificidad: 62% (CI: 55 - 69)
- Valor predictivo positivo: 19% (CI: 12 - 29)
- Valor predictivo negativo: 94% (CI: 89 – 98)

2. MSI-L
- Sensibilidad: 67% (CI: 43 - 84)
- Especificidad: 65% (CI: 57 - 72)
- Valor predictivo positivo: 19% (CI: 12 - 29)
- Valor predictivo negativo: 94% (CI: 89 – 98)

3. MSS
- Sensibilidad: 90% (CI: 77 - 97)
- Especificidad: 92% (CI: 85 - 97)
- Valor predictivo positivo: 39% (CI: 31 - 47)
- Valor predictivo negativo: 96% (CI: 92 – 98)

4. Sin tejido normal
- Sensibilidad: 88% (CI: 71 - 96)
- Especificidad: 92% (CI: 85 - 97)
- Valor predictivo positivo: 39% (CI: 31 - 47)
- Valor predictivo negativo: 96% (CI: 92 – 98)

5. No amplificado
- Sensibilidad: 72% (CI: 50 - 87)
- Especificidad: 62% (CI: 55 - 69)
- Valor predictivo positivo: 19% (CI: 12 - 29)
- Valor predictivo negativo: 94% (CI: 89 – 98)

Figura 13. CCR: Evaluación inestabilidad microsatelital (MSI)
Fuente: los autores

Para determinar el mejor tipo de tejido (tejido ideal) para las pruebas moleculares, se compararon los casos incluidos en parafina (360), con los casos de tejido fresco (85). Se encontró que el 100% de los casos de tejido fresco presentó amplificación con bandas nítidas en los geles de agarosa; es decir, que todos los casos que no amplificaron (112 casos), correspondían a casos de tejido incluido en parafina.

La sensibilidad del análisis inmunohistoquímico de MLH1 para la detección de MSI+ fue de 71% (CI: 49 - 87), la especificidad de 62% (CI: 55 - 69), el valor predictivo positivo de 19% (CI: 12 - 29) y el valor predictivo negativo de 94% (CI: 89 – 98).

3.2.2. Asociación resultados de las pruebas de MSI e IHC

El análisis comparativo MSI-IHC evidencia diferencias significativas cuando se relacionaron el tamaño del tumor (0,004), el grado histológico (p=0,04), los pólipos adenomatosos (0,01) y la expresión de la proteína MLH1 (p=0,000), pero no con otras variables clínico-patológicas (género, edad, localización, estado, IMC). Tabla 17.
Tabla 17. Comparaciones MSI, IHC, características clínicopatológicas

<table>
<thead>
<tr>
<th>Característica</th>
<th>N</th>
<th>MSS</th>
<th>MSI-L</th>
<th>MSI-H</th>
<th>Dos colas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(%)</td>
<td>n(%)</td>
<td>n(%)</td>
<td></td>
<td>Valor p</td>
</tr>
<tr>
<td>Género</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mujer</td>
<td>146</td>
<td>76(59)</td>
<td>43(29)</td>
<td>27(18)</td>
<td>0.508</td>
</tr>
<tr>
<td>Hombre</td>
<td>125</td>
<td>58(46)</td>
<td>45(36)</td>
<td>22(18)</td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 años</td>
<td>67</td>
<td>38(57)</td>
<td>17(25)</td>
<td>12(18)</td>
<td>0.311</td>
</tr>
<tr>
<td>> 50 años</td>
<td>204</td>
<td>96(47)</td>
<td>71(35)</td>
<td>37(18)</td>
<td></td>
</tr>
<tr>
<td>Localización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derecho</td>
<td>89</td>
<td>37(42)</td>
<td>38(43)</td>
<td>14(16)</td>
<td>0.165</td>
</tr>
<tr>
<td>Izquierdo</td>
<td>73</td>
<td>34(47)</td>
<td>24(33)</td>
<td>15(21)</td>
<td></td>
</tr>
<tr>
<td>Recto</td>
<td>63</td>
<td>38(60)</td>
<td>13(21)</td>
<td>12(19)</td>
<td></td>
</tr>
<tr>
<td>Tamaño del tumor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tis</td>
<td>5</td>
<td>1(20)</td>
<td>3(60)</td>
<td>1(20)</td>
<td></td>
</tr>
<tr>
<td>1 - mucosa</td>
<td>4</td>
<td>3(75)</td>
<td>1(25)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2 – submucosa</td>
<td>10</td>
<td>8(80)</td>
<td>1(10)</td>
<td>1(10)</td>
<td>0.004</td>
</tr>
<tr>
<td>3 – muscular</td>
<td>43</td>
<td>26(60)</td>
<td>3(7)</td>
<td>14(33)</td>
<td></td>
</tr>
<tr>
<td>4 - subserosa</td>
<td>66</td>
<td>36(55)</td>
<td>4(6)</td>
<td>26(39)</td>
<td></td>
</tr>
<tr>
<td>Ganglios linfáticos comprometidos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Ninguno</td>
<td>71</td>
<td>42(59)</td>
<td>11(15)</td>
<td>18(25)</td>
<td></td>
</tr>
<tr>
<td>hasta 3</td>
<td>26</td>
<td>17(65)</td>
<td>1(cap2014)</td>
<td>8(31)</td>
<td></td>
</tr>
<tr>
<td>mas de 3</td>
<td>25</td>
<td>14(56)</td>
<td>0</td>
<td>11(44)</td>
<td></td>
</tr>
<tr>
<td>Estado ganglionar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Negativo</td>
<td>71</td>
<td>42(59,2)</td>
<td>11(15,5)</td>
<td>18(25,3)</td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>51</td>
<td>31(60,8)</td>
<td>1(1,9)</td>
<td>19(37,3)</td>
<td></td>
</tr>
<tr>
<td>Característica</td>
<td>N</td>
<td>MSS</td>
<td>MSI-L</td>
<td>MSI-H</td>
<td>Dos colas</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Temprano</td>
<td>85</td>
<td>44(51)</td>
<td>26(31)</td>
<td>16(19)</td>
<td>0,118</td>
</tr>
<tr>
<td>Avanzado</td>
<td>68</td>
<td>83(57)</td>
<td>48(32)</td>
<td>7(10)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferenciación</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo grado</td>
<td>204</td>
<td>113(55)</td>
<td>58(28)</td>
<td>33(16)</td>
<td>0,04</td>
</tr>
<tr>
<td>Característica</td>
<td>N</td>
<td>MSS</td>
<td>MSI-L</td>
<td>MSI-H</td>
<td></td>
</tr>
<tr>
<td>Alto grado</td>
<td>29</td>
<td>9(31)</td>
<td>14(48)</td>
<td>6(21)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inmunohistoquímica MLH1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positivo</td>
<td>160</td>
<td>85(53)</td>
<td>47(29)</td>
<td>28(18)</td>
<td>0,000</td>
</tr>
<tr>
<td>Negativo</td>
<td>25</td>
<td>3(12)</td>
<td>16(64)</td>
<td>6(24)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Índice de masa corporal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>87</td>
<td>50(57)</td>
<td>19(22)</td>
<td>18(21)</td>
<td>0,176</td>
</tr>
<tr>
<td>sobrepeso</td>
<td>28</td>
<td>13(46)</td>
<td>12(43)</td>
<td>3(11)</td>
<td></td>
</tr>
<tr>
<td>Obesidad</td>
<td>65</td>
<td>39(60)</td>
<td>18(28)</td>
<td>8(12)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pólipos adenomatosos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguno</td>
<td>184</td>
<td>109(59)</td>
<td>16(9)</td>
<td>59(32)</td>
<td>0,01</td>
</tr>
<tr>
<td>Menos de 50</td>
<td>26</td>
<td>14(54)</td>
<td>6(23)</td>
<td>6(23)</td>
<td></td>
</tr>
<tr>
<td>Más de 50</td>
<td>1</td>
<td>0</td>
<td>1(100)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de tumor</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>183</td>
<td>109(60)</td>
<td>21(11)</td>
<td>53(29)</td>
<td>0,412</td>
</tr>
<tr>
<td>C, Mucinoso</td>
<td>22</td>
<td>12(55)</td>
<td>2(9)</td>
<td>8(36)</td>
<td></td>
</tr>
<tr>
<td>C, Anillo de sello</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2(100)</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>4</td>
<td>2(50)</td>
<td>0</td>
<td>2(50)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antecedentes familiares de cáncer</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativo</td>
<td>178</td>
<td>102(57,3)</td>
<td>21(11,8)</td>
<td>55(30,9)</td>
<td>0,596</td>
</tr>
<tr>
<td>Positivo</td>
<td>33</td>
<td>21(63,6)</td>
<td>2(6,1)</td>
<td>10(30,3)</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: los autores
Se realizó un modelo multinomial - regresión logística, para el análisis de los resultados de MSI e IHC con las características clínico-patológicas. Los resultados mostraron asociaciones con grado histológico alto (riesgo 2,5 veces mayor) para MSI-H y para el CCR de inicio temprano (2,8 veces mayor); el tipo histológico anillo de sello con los pacientes de CCR de inicio temprano (4,16 veces más); y mayor pérdida de MLH1 en las resecciones colónicas (2,83 veces más). Tabla 18. El resto de variables no presentaron diferencias en el modelo multivariado.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>OR</th>
<th>IC 95%</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado histológico (Bajo - Alto) ~ MSI + MLH1</td>
<td>2,59</td>
<td>1,007</td>
<td>6,745</td>
</tr>
<tr>
<td>Grado histológico (Bajo - Alto) ~ MSI-H</td>
<td>3,29</td>
<td>1,22</td>
<td>9,145</td>
</tr>
<tr>
<td>Grado histológico (Bajo - Alto) ~ Edad (<50 - >50)</td>
<td>2,866</td>
<td>1,09</td>
<td>7,51</td>
</tr>
<tr>
<td>Edad (<50 - >50) ~ MSI + MLH1 + Tipo de tumor: anillo de sello</td>
<td>4,16</td>
<td>1,64</td>
<td>1,09E+07</td>
</tr>
<tr>
<td>MLH1 ~ Biopsia + resección del colon</td>
<td>2,83</td>
<td>1,17</td>
<td>7,94</td>
</tr>
</tbody>
</table>

Fuente: los autores

El análisis de los pacientes que presentaron MSI+ e IHC-MLH1 negativos evidenció una edad media de 62,7 años (ocho mujeres y seis hombres); 12 pacientes presentaron adenocarcinoma de tipo usual; un paciente, carcinoma mucinoso; y dos pacientes, carcinoma con células en anillo de sello. La localización predominante fue el colon derecho, 12 pacientes (80%). Tres pacientes presentaron alto grado histológico, ocho presentaron tamaños avanzados del tumor y un paciente presentó CCR metacrónico.

3.2.3. Análisis molecular en pacientes CCR - MSS

En la figura 14 se puede observar que 276 pacientes tienen resultados para las dos pruebas MSI – IHC. Se dividieron en dos grupos: el 4,7% de los casos, con alta inestabilidad y pérdida de la expresión de la proteína MLH1; el 42% fue estable (MSS) para los microsatélites, y la proteína
MLH1 presentó expresión normal. Los casos con MSI-H y MSI-L fueron seleccionados para probar las mutaciones en BRAF (V600E – K601I). A los casos MSS se les probaron 19 mutaciones en TP53, ocho mutaciones en KRAS y 15 mutaciones en APC.

Figura 14. CCR: Panel molecular CCR, mutaciones probadas – casos – tejido FFPE.

Fuente: los autores

De acuerdo con la disponibilidad de ADN de buena calidad, obtenido a partir de tejido incluido en parafina (FFPE), se realizó la amplificación y secuenciación a 134 casos de CCR. El rendimiento del ADN en la prueba de FFPE fue adecuado, ya que 75,4% (101/134) de los pacientes presentaron al menos una mutación en alguno de los genes evaluados. El porcentaje de mutaciones en TP53 fue de 63,4% (85/134); de KRAS, de 23,9% (32/134); y de APC, 40,3% (54/134). Un total de 78 casos (58,2%) presentó al menos una mutación en TP53; y ocho pacientes (6%), dos mutaciones. Para KRAS, 32 pacientes (23,9%) presentaron una mutación; para APC, 50 pacientes (37,3%) presentaron una mutación; y cuatro pacientes (3%) presentaron dos mutaciones. (Tabla 19). 86 casos (64,2%) fueron pacientes de Ibagué; 37 (27,6%), de Medellín; ocho (6%), de Bogotá; dos (1,5%), de Neiva; y uno, de Pasto. Se analizaron 76 mujeres (56,7%) y 58 hombres (43,3%). El 71,6% de los pacientes (96 casos) tenía más de 50 años y 38 casos eran menores de 50 años. La edad promedio, 56,7 años; el rango de edad estuvo entre 19 y 88 años. Solo al 29% de los pacientes con antecedentes familiares de cáncer (45/155) se les logró realizar la prueba de MSI; la limitante fue principalmente la disponibilidad de tejido tumoral.
Tabla 19. Perfil mutacional CCR- Tejido FFPE – Edad - género

<table>
<thead>
<tr>
<th>Característica</th>
<th>#Pacientes (%)</th>
<th>Tp53 Número de mutaciones</th>
<th>KRAS Número de mutaciones n(%)</th>
<th>APC Número de mutaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de mutaciones</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad < 50 años</td>
<td>38</td>
<td>15</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>28,4%</td>
<td>39,5%</td>
<td>52,7%</td>
<td>7,8%</td>
</tr>
<tr>
<td>Edad > 50 años</td>
<td>96</td>
<td>33</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>71,6%</td>
<td>34,4%</td>
<td>60,4%</td>
<td>5,2%</td>
</tr>
<tr>
<td>Total mutaciones</td>
<td>78</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor p</td>
<td>0,667</td>
<td>0,973</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>Género</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mujer</td>
<td>76</td>
<td>31</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>56,7%</td>
<td>40,8%</td>
<td>52,6%</td>
<td>6,6%</td>
</tr>
<tr>
<td>Hombre</td>
<td>58</td>
<td>17</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>43,3%</td>
<td>29,3%</td>
<td>65,5%</td>
<td>5,2%</td>
</tr>
<tr>
<td>Total mutaciones</td>
<td>78</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor p</td>
<td>0,254</td>
<td>0,911</td>
<td>0,949</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: los autores
Como herramienta exploratoria para observar el comportamiento de las variables y la asociación de las diferentes mutaciones se usó el análisis de componentes principales. El resultado se puede apreciar en la figura 15. En los vectores aparecen los nombres de las mutaciones; estos vectores indican la respuesta a la forma como se relacionan las mutaciones en estos genes entre sí. Por ejemplo, en la dimensión 1, los genes que tienen mayor representación estadística son KRAS y la primera mutación en APC, mientras que en la dimensión 2, las mutaciones en el gen TP53 son las que tienen mayor representación estadística. En conclusión, las mutaciones, como se puede observar, están distribuidas en dimensiones diferentes, y no se superponen, presentando un patrón no aleatorio.

Figura 15. CCR: Análisis componentes principales genes tejido FFPE.

Fuente: los autores
Las comparaciones de los resultados de inmunohistoquímica con los de las mutaciones encontradas no arrojaron diferencias estadísticamente significativas; tampoco las comparaciones con variables sociodemográficas (ciudad, estrato socioeconómico, nivel educativo) o clínico-patológicas (localización, grado de diferenciación, estado, antecedentes de cáncer).

En la tabla 20 se puede apreciar el detalle de las mutaciones encontradas por gen, con sus detalles moleculares y las neoplasias malignas asociadas.
Tabla 20. Mutaciones TP53, KRAS, APC – COSMIC- detalle molecular - Tipo de tumor

<table>
<thead>
<tr>
<th>Gen</th>
<th># CASOS</th>
<th>ID cosmic</th>
<th>CDS mutation</th>
<th>AA mutation</th>
<th>Comentarios – Reportes de malignidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R175H</td>
<td>35</td>
<td>COSM10648</td>
<td>c.524G>A</td>
<td>Substitution - Missense</td>
<td>más del 80% se reportan en intestino grueso, seguido de páncreas 37%, esófago, seno y SNC todas menos del 30%</td>
</tr>
<tr>
<td>R175S</td>
<td>32</td>
<td>COSM43931</td>
<td>c.523C>A</td>
<td>Substitution - Missense</td>
<td>antes solo reportada en tracto genital</td>
</tr>
<tr>
<td>R175L</td>
<td>5</td>
<td>COSM10718</td>
<td>c.524G>T</td>
<td>Substitution - Missense</td>
<td>antes reportada en hígado SNC, tracto biliar, pulmon</td>
</tr>
<tr>
<td>C176S</td>
<td>2</td>
<td>COSM44146</td>
<td>c.526T>A</td>
<td>Substitution - Missense</td>
<td>Linfoides 3, Intestino grueso 2, Esófago 2, Pancreas 2, Endometrio 1</td>
</tr>
<tr>
<td>C275Y</td>
<td>2</td>
<td>COSM10893</td>
<td>c.824G>A</td>
<td>Substitution - Missense</td>
<td>Colon (5 muestras), hematopoyetico 3 SNC, ovario y piel 2 cadauno</td>
</tr>
<tr>
<td>E287D</td>
<td>2</td>
<td>COSM44077</td>
<td>c.861G>T</td>
<td>Substitution - Missense</td>
<td>Reportada para Seno, neoplasia linfoide, higado una muestra c/u</td>
</tr>
<tr>
<td>P177L</td>
<td>2</td>
<td>COSM44097</td>
<td>c.530C>T</td>
<td>Substitution - Missense</td>
<td>piel 3, pulmon 1</td>
</tr>
<tr>
<td>R175C</td>
<td>2</td>
<td>COSM43680</td>
<td>c.523C>T</td>
<td>Substitution - Missense</td>
<td>colon 4, estómag 2</td>
</tr>
<tr>
<td>R273C</td>
<td>2</td>
<td>COSM10659</td>
<td>c.817C>T</td>
<td>Substitution - Missense</td>
<td>SNC62, CCR 38, esófago, estomado páncrees menos de 20</td>
</tr>
<tr>
<td>C176Y</td>
<td>1</td>
<td>COSM10687</td>
<td>c.527G>A</td>
<td>Substitution - Missense</td>
<td>esófago 7 ovario 5 hetamo, SNC y CCR 4c/u</td>
</tr>
</tbody>
</table>
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

<table>
<thead>
<tr>
<th>Gen</th>
<th># CA SOS</th>
<th>ID cosmic</th>
<th>CDS mutation</th>
<th>AA mutation</th>
<th>Comentarios – Reportes de malignidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>E271*</td>
<td>1</td>
<td>COSM43750</td>
<td>c.811G>T</td>
<td>Substitution - Nonsense</td>
<td>Pulmón 4, esófago 3, CCR 3, seno y ovario 2c/u,</td>
</tr>
<tr>
<td>E287K</td>
<td>1</td>
<td>COSM44225</td>
<td>c.859G>A</td>
<td>Substitution - Missense</td>
<td>piel 2, hígado, estómago, tracto urinario seno 1/cu</td>
</tr>
<tr>
<td>G266*</td>
<td>1</td>
<td>COSM44891</td>
<td>c.796G>T</td>
<td>Substitution - Nonsense</td>
<td>Pulmón 6, páncreas 3, ovario, hígado esófago 2c/u</td>
</tr>
<tr>
<td>P177S</td>
<td>1</td>
<td>COSM10650</td>
<td>c.529C>T</td>
<td>Substitution - Missense</td>
<td>Prostát, piel y tracto digestivo superior 2 casos, SNC y hemato 1 caso c/u</td>
</tr>
<tr>
<td>R267W</td>
<td>1</td>
<td>COSM11183</td>
<td>c.799C>T</td>
<td>Substitution - Missense</td>
<td>SNC 8, hígado 7, CCR 6, estómago 3, hemato 1</td>
</tr>
<tr>
<td>R283C</td>
<td>1</td>
<td>COSM10911</td>
<td>c.847C>T</td>
<td>Substitution - Missense</td>
<td>Seno 5, tracto urinario 3, SNC tracto digestivo superior 2c/u</td>
</tr>
<tr>
<td>V172I</td>
<td>1</td>
<td>COSM43955</td>
<td>c.514G>A</td>
<td>Substitution - Missense</td>
<td>hemato y CCR 2, esófago, tracto urinario seno 1 c/u</td>
</tr>
<tr>
<td>V173A</td>
<td>1</td>
<td>COSM44327</td>
<td>c.518T>A</td>
<td>Substitution - Missense</td>
<td>SNC 6, hígado y via biliar 3, hemato y pulmon 2 c/u</td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12D</td>
<td>15</td>
<td>COSM521</td>
<td>c.35G>A</td>
<td>sustitución-missense</td>
<td>CCR 8000, pancreas 2500, pulmon 1200, tracto biliar y ovario menos 1000</td>
</tr>
<tr>
<td>G12A</td>
<td>5</td>
<td>COSM522</td>
<td>c.35G>C</td>
<td>sustitución-missense</td>
<td>CCR 1400, pulomn 500, páncreas 100, endometrio<50</td>
</tr>
<tr>
<td>Gen</td>
<td># CA SOS</td>
<td>ID cosmic</td>
<td>CDS mutation</td>
<td>AA mutation</td>
<td>Comentarios – Reportes de malignidades</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>G13D</td>
<td>5</td>
<td>COSM531</td>
<td>c.38_39GC>AT</td>
<td>sustitución compuesta</td>
<td>CCR 13, biliar 3, pancreas 2, tiroides1, hígado 1</td>
</tr>
<tr>
<td>G12V</td>
<td>3</td>
<td>COSM520</td>
<td>c.35G>T</td>
<td>sustitución-missense</td>
<td>CCR 5000, pancreas 1500, pulmon 1200, ovario endometrio < 100</td>
</tr>
<tr>
<td>G12C</td>
<td>1</td>
<td>COSM516</td>
<td>c.34G>T</td>
<td>sustitución-missense</td>
<td>Pulmon 2250, Intefino grueso 1850, pancreas 190, Tracto biliar 50, endometrio 50</td>
</tr>
<tr>
<td>G12R</td>
<td>1</td>
<td>COSM518</td>
<td>c.34G>C</td>
<td>sustitución-missense</td>
<td>páncreas 650, CCR 250, pulmon 100, tracto biliar y ovario 20</td>
</tr>
<tr>
<td>L6S</td>
<td>1</td>
<td></td>
<td>c.16C>T</td>
<td>sustitución-missense</td>
<td>No reportada. Hay reporte de L6F (COSM1583152)</td>
</tr>
<tr>
<td>V8L</td>
<td>1</td>
<td></td>
<td>c.22G>C</td>
<td>sustitución-missense</td>
<td>No reportada. Hay reporte de V6V, c24A>G (COSM507)</td>
</tr>
<tr>
<td>APC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No reportada, está reportada la K1363* c.4087A>T (COSM18797) para 4 muestras de CCR</td>
</tr>
<tr>
<td>K1363N</td>
<td></td>
<td></td>
<td>c.4089A>T</td>
<td>substitution - missense</td>
<td>No reportada, están reportadas P1369H (COSM29079) para 1 muestra de SNC y p.P1369P c.4107C>A (COSM295587) en 1 CCR</td>
</tr>
<tr>
<td>P1369L</td>
<td>16</td>
<td></td>
<td>c.4106C>T</td>
<td>substitution - missense</td>
<td>CCR 215, estómago 10, intestino delgado, tejidos blandos, endometrio < 5</td>
</tr>
<tr>
<td>R1450*</td>
<td>7</td>
<td>COSM13127</td>
<td>c.4348C>T</td>
<td>substitution - Nonsense</td>
<td>CCR47</td>
</tr>
<tr>
<td>Q1367*</td>
<td>3</td>
<td>COSM13121</td>
<td>c.4099C>T</td>
<td>substitution - Nonsense</td>
<td>CCR 65, estómago 5, inst. delgado 1</td>
</tr>
<tr>
<td>Q1378*</td>
<td>2</td>
<td>COSM18862</td>
<td>c.4132C>T</td>
<td>substitution - Nonsense</td>
<td>CCR 65, estómago 5, inst. delgado 1</td>
</tr>
<tr>
<td>Gen</td>
<td># CA SOS</td>
<td>ID cosmic</td>
<td>CDS mutation</td>
<td>AA mutation</td>
<td>Comentarios – Reportes de malignidades</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>S1434I</td>
<td>2</td>
<td>COSM18820</td>
<td>c.4301G>T</td>
<td>Substitution - Missense</td>
<td>CCR 1</td>
</tr>
<tr>
<td>T1448I</td>
<td>2</td>
<td></td>
<td>c.4343C>T</td>
<td>Substitution - Missense</td>
<td>No reportada, están reportadas T1448T c.4344C>T (COSM19132) para 1 muestra de SNC</td>
</tr>
<tr>
<td>K1370I</td>
<td>1</td>
<td></td>
<td>c.4109A>T</td>
<td>Substitution - Missense</td>
<td>No reportada, están reportadas D1370* c.4108A>T (COSM18758) para 1 muestra de CCR</td>
</tr>
<tr>
<td>K1449*</td>
<td>1</td>
<td>COSM99781</td>
<td>c.4345A>T</td>
<td>Substitution - Nonsense</td>
<td>CCR 1</td>
</tr>
<tr>
<td>K1449E</td>
<td>1</td>
<td></td>
<td>c.4345A>G</td>
<td>Substitution - Missense</td>
<td>No reportada, unica la K1449* de CCR</td>
</tr>
<tr>
<td>P1361L</td>
<td>1</td>
<td>COSM19117</td>
<td>c.4082C>T</td>
<td>Substitution - Missense</td>
<td>esófago, tejidos blandos 1/cu</td>
</tr>
<tr>
<td>P1443T</td>
<td>1</td>
<td></td>
<td>c.4327C>A</td>
<td>Substitution - Missense</td>
<td>No reportada, está reportada .P1443p.c.4329T>A (COSM18927) para CCR 2 y SNC 1</td>
</tr>
<tr>
<td>Q1367H</td>
<td>1</td>
<td>COSM19160</td>
<td>c.4101G>T</td>
<td>Substitution - Missense</td>
<td>No reportada esta reportada c.4101G>T produce el mismo cambio de aminoacido Q1367H</td>
</tr>
<tr>
<td>S1355F</td>
<td>1</td>
<td></td>
<td>c.4064C>T</td>
<td>Substitution - Missense</td>
<td>No reportada, están reportadas p.S1355Y c.4064C>A (COSM1183191) para CCR 1, p.S1355P c.4063T>C (COSM19652) para tejidos blandos 2 y CCR 1, p.S1355P (COSM5352247) en esofago 1 y p.S1355Y c.4064C>A (COSM1183191) para CCR 1</td>
</tr>
<tr>
<td>S1362F</td>
<td>1</td>
<td>COSM30778</td>
<td>c.4085C>T</td>
<td>Substitution - Missense</td>
<td>CCR1</td>
</tr>
</tbody>
</table>

Fuente: los autores.
Las asociaciones más frecuentes fueron, en su orden:

1. **TP53** – **APC** 31,4% (42/134), 2. **TP53** – **KRAS** 18,6% (25/134), 3. **KRAS** – **APC** 12,7% (17/134), 4. (**TP53**, **APC**, **KRAS**) 10,4% (14/134), 5. 33 pacientes (24,62%) no presentaron mutaciones en ninguno de los genes examinados. (Figura 16).

![Figura 16. CCR: perfil mutacional TP53, KRAS, APC](image)

Fuente: los autores

Los pacientes con mutaciones en los tres genes (**TP53**, **KRAS** y **APC**) tuvieron una edad promedio de 55,3 años, del rango que osciló entre 37 y 75 años; el promedio de edad en general fue de 56 años. La localización más frecuente fue el recto, con el 33% de los casos.

El resultado de las comparaciones entre el estatus mutacional de **TP53**, **KRAS** y **APC** y las variables clínico-patológicas no evidenció diferencias entre los grupos examinados; sin embargo, las mujeres presentaron mayor frecuencia de mutaciones en **TP53**, **KRAS** y **APC** que los hombres. Los pacientes con CCR de inicio tardío (mayores de 50 años) presentaron mayor frecuencia de mutaciones en **TP53** y **KRAS**, comparados con los menores de 50 años. Los tumores reportados con bajo grado histológico presentaron mayor frecuencia de mutaciones en los tres genes. Las comparaciones de las mutaciones con las variables clínicas se aprecian en la tabla 21.
Tabla 21. Pacientes CCR-MSS: Mutaciones en TP53, KRAS, APC – tejido FFPE

<table>
<thead>
<tr>
<th>Característica</th>
<th>T53</th>
<th></th>
<th></th>
<th>KRAS</th>
<th></th>
<th></th>
<th>APC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Silvestre</td>
<td>Mutado</td>
<td>P</td>
<td>Silvestre</td>
<td>Mutado</td>
<td>P</td>
<td>Silvestre</td>
<td>Mutado</td>
</tr>
<tr>
<td></td>
<td>n(%)</td>
<td>n(%)</td>
<td>p</td>
<td>n(%)</td>
<td>n(%)</td>
<td>p</td>
<td>n(%)</td>
<td>n(%)</td>
<td>p</td>
</tr>
<tr>
<td>GÉNERO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mujer</td>
<td>76</td>
<td>31(40,8)</td>
<td>45(59,2)</td>
<td>0,17</td>
<td>57(75)</td>
<td>19(25)</td>
<td>0,728</td>
<td>46(60,5)</td>
<td>30(39,5)</td>
</tr>
<tr>
<td>Hombre</td>
<td>58</td>
<td>17(29,3)</td>
<td>41(70,7)</td>
<td>0,579</td>
<td>45(77,6)</td>
<td>13(22,4)</td>
<td>0,923</td>
<td>34(58,7)</td>
<td>24(41,3)</td>
</tr>
<tr>
<td>EDAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 años</td>
<td>38</td>
<td>15(39,5)</td>
<td>23(60,5)</td>
<td>0,579</td>
<td>29(76,3)</td>
<td>9(23,7)</td>
<td>0,923</td>
<td>21(55,3)</td>
<td>17(44,7)</td>
</tr>
<tr>
<td>> 50 años</td>
<td>96</td>
<td>33(34,4)</td>
<td>63(65,6)</td>
<td></td>
<td>73(76)</td>
<td>23(24)</td>
<td></td>
<td>59(61,5)</td>
<td>37(38,5)</td>
</tr>
<tr>
<td>Característica</td>
<td>T53</td>
<td>KRAS</td>
<td>APC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCALIZACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derecho</td>
<td>37</td>
<td>24</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13(35,1)</td>
<td>64,9</td>
<td>16(43,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26(70,1)</td>
<td>29,9</td>
<td>16(43,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izquierdo</td>
<td>34</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12(35,3)</td>
<td>64,7</td>
<td>12(35,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26(76,5)</td>
<td>23,5</td>
<td>12(35,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recto</td>
<td>38</td>
<td>27</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11(28,9)</td>
<td>71,1</td>
<td>19(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31(81,6)</td>
<td>18,4</td>
<td>19(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temprano</td>
<td>44</td>
<td>27</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17(38,6)</td>
<td>61,4</td>
<td>19(43,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33(75)</td>
<td>25(25)</td>
<td>19(43,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avanzado</td>
<td>39</td>
<td>29</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10(25,7)</td>
<td>74,3</td>
<td>16(41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29(74,4)</td>
<td>25,6</td>
<td>16(41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADO DE DIFERENCIACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo grado</td>
<td>113</td>
<td>75</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38(33,6)</td>
<td>66,4</td>
<td>58(41,6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84(74,3)</td>
<td>25,7</td>
<td>47(41,6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto grado</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(44,4)</td>
<td>55,6</td>
<td>66,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8(88,8)</td>
<td>11,2</td>
<td>3(33,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Característica</td>
<td>T53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>30(35,3)</td>
<td>55(64,7)</td>
<td>0,267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>64(75,3)</td>
<td>21(24,7)</td>
<td></td>
<td>0,104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativo</td>
<td>1(33,4)</td>
<td>2(66,6)</td>
<td></td>
<td>2(66,6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1(33,4)</td>
<td>2(66,6)</td>
<td></td>
<td>1(33,4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ÍNDICE DE MASA CORPORAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Sobrepeso</td>
</tr>
<tr>
<td>Obesidad</td>
</tr>
</tbody>
</table>

Fuente: los autores
Con el fin de identificar las correlaciones entre las diferentes mutaciones y las variables clínicas relevantes en los análisis previos, se realizó una comparación con las variables clínicas, en la que no se encontraron diferencias significativas entre los grupos; sin embargo, si se comparan las mutaciones entre sí, se aprecian diferencias significativas entre los genes TP53 y APC. Con el análisis multivariado no se encontraron asociaciones. (Tabla 22).

Tabla 22. CCR-MSS: Comparación entre mutaciones - TP53, KRAS, APC

<table>
<thead>
<tr>
<th>Gen</th>
<th>TP53</th>
<th>Dos colas</th>
<th>Multivariado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parámetro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silvestre</td>
<td>Mutado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
<td>Silvestre</td>
<td>41(40,2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutado</td>
<td>7(21,9)</td>
</tr>
<tr>
<td>APC</td>
<td></td>
<td>Silvestre</td>
<td>36(45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutado</td>
<td>12(22,2)</td>
</tr>
</tbody>
</table>

Fuente: los autores

En la tabla 23 podemos apreciar las mutaciones divididas por gen y por número de pacientes afectados.
Tabla 23. Pacientes CCR-MSS: Mutaciones TP53, KRAS, APC, número de pacientes

<table>
<thead>
<tr>
<th>TP53</th>
<th>Pacientes N</th>
<th>APC</th>
<th>Pacientes N</th>
<th>KRAS</th>
<th>Pacientes N</th>
</tr>
</thead>
<tbody>
<tr>
<td>R175H</td>
<td>35</td>
<td>1363N</td>
<td>19</td>
<td>G12D</td>
<td>15</td>
</tr>
<tr>
<td>R175S</td>
<td>32</td>
<td>P1369L</td>
<td>16</td>
<td>G12A</td>
<td>5</td>
</tr>
<tr>
<td>R175L</td>
<td>5</td>
<td>R145*</td>
<td>7</td>
<td>G13D</td>
<td>5</td>
</tr>
<tr>
<td>C176S</td>
<td>2</td>
<td>Q1367*</td>
<td>3</td>
<td>G12V</td>
<td>3</td>
</tr>
<tr>
<td>C275Y</td>
<td>2</td>
<td>Q1378*</td>
<td>2</td>
<td>G12C</td>
<td>1</td>
</tr>
<tr>
<td>E287D</td>
<td>2</td>
<td>S1434</td>
<td>2</td>
<td>G12R</td>
<td>1</td>
</tr>
<tr>
<td>P177L</td>
<td>2</td>
<td>T1448I</td>
<td>2</td>
<td>L6S</td>
<td>1</td>
</tr>
<tr>
<td>R175C</td>
<td>2</td>
<td>K1370I</td>
<td>1</td>
<td>V8L</td>
<td>1</td>
</tr>
<tr>
<td>R273C</td>
<td>2</td>
<td>K1449*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C176Y</td>
<td>1</td>
<td>1449E</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E271*</td>
<td>1</td>
<td>P1361L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E287K</td>
<td>1</td>
<td>P1443T</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G266*</td>
<td>1</td>
<td>1367H</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N268I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P177S</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R267W</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R283C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V172I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V173A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identificación según COSMIC: (Catalogue of somatic mutation in cancer) http://cancer.sanger.ac.uk/cosmic

Fuente: los autores

El análisis multivariado que incluyó, además de la edad, el género, la localización del tumor y otras variables, como ancestría, ciudad de residencia, nivel educativo, estrato socioeconómico, consumo de alcohol, consumo de cigarrillo, grado de diferenciación del tumor y estado de la enfermedad no evidenció diferencias significativas entre los grupos.

3.2.3.1. Gen TP53

A continuación se describen las variantes en TP53, con su ID en COSMIC (Catalogue of somatic mutation in cancer), y los respectivos reportes en esta base de datos y en la base IARC (IARC TP53 Database). La mayoría de las mutación fueron deletéreas; las que no lo fueron se anotaron según la clase SIFT (http://sift.jcvi.org/). Este software permite realizar la predicción de la patogenicidad con base en el grado de conservación de los residuos de aminoácidos en los alineamientos de las secuencias.
En este estudio se encontraron de 21 mutaciones, de las cuales las cinco primeras son las de mayor frecuencia -por gen y por número de pacientes-, en este orden: 1. p.R175H (c.524G>A), variante patogénica del gen TP53, consiste en una sustitución con cambio de sentido (*missense*), identificada en COSMIC como ID:COSM10648, reportada en múltiples ocasiones en cáncer de intestino grueso y páncreas; cuenta con 1.276 reportes en cáncer de origen somático. 2. p.R175S (c.523C>A), del gen TP53, también patogénica y *missense*, identificada como ID: COSM43931, y reportada en cáncer de tracto genital. 3. COSM10718 p.R175L (c.524G>T), reportada en hígado, sistema nervioso central, tracto biliar y pulmón; este sería su primer reporte en CCR.

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Las mutaciones reportadas que están en proceso de selección para inclusión como variante patogénica, o que aún no tienen número de identificación en COSMIC, están reportadas en la base de datos de mutaciones de TP53, disponible en: http://download.bioon.com.cn/view/upload/201302/07091203_9131.xls.

3.2.3.2. Gen KRAS

En el análisis del gen KRAS, la mayoría de la variantes son patogénicas, reportadas en COSMIC y/o en la base de datos de variantes clínicas del NCBI http://www.ncbi.nlm.nih.gov/clinvar/. El orden, según la frecuencia de aparición, es el siguiente: 1. p.G12D (c.35G>A) sustitución missense, variante patogénica identificada con ID: COSM521; ha sido descrita en alrededor de 8.000 casos de CCR, además, en cáncer de páncreas, pulmón, tracto biliar y ovario; los reportes en el NCBI también la asocian con carcinoma de páncreas, de célula pequeña del pulmón y nevus sebáceo. 2. p.G12A (c.35G>C) sustitución missense, variante patogénica identificada ID:COSM522, reportada también en CCR con más de 1.000 casos y en otros tipos de cáncer, como pulmón, páncreas y endometrio, en el NCBI y asociada con carcinoma de pulmón de célula pequeña. 3. G13D (c.38_39GC>AT) sustitución compuesta, reportada en CCR y en otros tipos de cáncer gastrointestinales (biliar, páncreas, hígado) y tiroides; además, en el NCBI en carcinoma de célula pequeña del pulmón, cáncer de glándula mamaria y astrocitoma pilocítico. 4. G12V (c.35G>T) COSM520, reportada en 5.000 casos de CCR, 1.500 casos de páncreas, pocos casos de pulmón, ovario, endometrio y en el NCBI; además de los anteriores, en leucemia. 5. G12C (c.34G>T) COSM513, reportada en más de 1.000 casos de CCR, y en pulmón, páncreas y endometrio. 6. G12R (c.34G>C) COSM518, reportada en 650 casos de cáncer de páncreas, en 250 casos de CCR, en 100 casos de cáncer de pulmón, en tracto biliar y ovario, y en el NCBI; además, en carcinoma de vejiga urinaria. 7. L6S(c.16C>T) y V8L(c.22G>C), no
reportadas en COSMIC ni en el NCBI ambas sustituciones missense, cada una encontrada en un paciente; fueron analizadas in silico para investigar su probable efecto patogénico, basados en el probable daño proteico. Los software usados fueron SIFT http://sift.jcvi.org/ y PolyPhenv2 http://genetics.bwh.harvard.edu/pph/, siendo probablemente patogénicas.

3.2.3.3. Gen APC

La comparación de las frecuencias de las variantes encontradas en el presente estudio con las reportadas en la base de datos COSMIC evidencia que para TP53, la variante más reportada es la misma R175H.
Para la variante R175S, Colombia reporta 32 casos y COSMIC solo ocho. En las demás variantes predominan, como es de esperarse, los reportes de COSMIC.

Las variantes nuevas que aún no han sido reportadas, predominan en el gen APC, con ocho variantes, seguida de KRAS, con dos variantes.

Para APC, como se puede apreciar en la figura 17, son más frecuentes las variantes no reportadas.
El análisis por tipo de mutaciones presentadas mostró que las transiciones más frecuentes fueron C→T y G→A; y en las transversión, la G→C fue la más frecuente. El cambio aminoacídico más común fue por aminoácidos no polares. Estos resultados se presentan en la tabla 24.
Tabla 24. Estatus mutacional en KRAS – TP53 – APC

<table>
<thead>
<tr>
<th>KRAS</th>
<th>número (%)</th>
<th>TP53</th>
<th>número (%)</th>
<th>APC</th>
<th>número (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estatus</td>
<td>Silvestre</td>
<td>102(76,1)</td>
<td>Silvestre</td>
<td>49(36,6)</td>
<td>Silvestre</td>
</tr>
<tr>
<td></td>
<td>Mutado</td>
<td>32(23,9)</td>
<td>Mutado</td>
<td>85 (63,4)</td>
<td>Mutado</td>
</tr>
<tr>
<td>Cambio</td>
<td>8</td>
<td>Cambio</td>
<td>19</td>
<td>Cambio</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>G→T transversión</td>
<td>2 (25)</td>
<td>G→T transversión</td>
<td>4 (21)</td>
<td>G→T transversión</td>
</tr>
<tr>
<td></td>
<td>G→C transversión</td>
<td>3 (37,5)</td>
<td>G→C transversión</td>
<td>1 (5,26)</td>
<td>G→C transversión</td>
</tr>
<tr>
<td></td>
<td>C→T transversión</td>
<td>2 (25)</td>
<td>C→T transversión</td>
<td>6 (31,57)</td>
<td>C→T transversión</td>
</tr>
<tr>
<td></td>
<td>_</td>
<td>T→A transversión</td>
<td>2 (10,52)</td>
<td>A→T transversión</td>
<td>3 (20)</td>
</tr>
<tr>
<td></td>
<td>Cambio por aa ácido</td>
<td>2 (25)</td>
<td>Cambio por aa ácido</td>
<td>1 (5,26)</td>
<td>Cambio por aa ácido</td>
</tr>
<tr>
<td></td>
<td>Cambio por aa básico</td>
<td>1 (5,26)</td>
<td>Cambio por aa básico</td>
<td>2 (10,52)</td>
<td>Cambio por aa básico</td>
</tr>
<tr>
<td></td>
<td>Cambio por aa polar</td>
<td>2 (25)</td>
<td>Cambio por aa polar</td>
<td>6 (31,57)</td>
<td>Cambio por aa polar</td>
</tr>
<tr>
<td></td>
<td>Cambio por aa no polar</td>
<td>3 (37,5)</td>
<td>Cambio por aa no polar</td>
<td>5 (26,31)</td>
<td>Cambio por aa no polar</td>
</tr>
<tr>
<td></td>
<td>Cambio por aa aromático</td>
<td>0</td>
<td>Cambio por aa aromático</td>
<td>3 (15,78)</td>
<td>Cambio por aa aromático</td>
</tr>
<tr>
<td></td>
<td>_</td>
<td>Parada</td>
<td>2 (10,52)</td>
<td>Parada</td>
<td>4 (26,66)</td>
</tr>
<tr>
<td>Tipo de mutación</td>
<td>%</td>
<td>Tipo de mutación</td>
<td>%</td>
<td>Tipo de mutación</td>
<td>%</td>
</tr>
<tr>
<td>KRAS</td>
<td>número (%)</td>
<td>TP53</td>
<td>número (%)</td>
<td>APC</td>
<td>número (%)</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>G12D</td>
<td>11,19</td>
<td>R175H</td>
<td>26,12</td>
<td>K1363N</td>
<td>14,18</td>
</tr>
<tr>
<td>G12A</td>
<td>3,73</td>
<td>R175S</td>
<td>23,88</td>
<td>P1369L</td>
<td>11,94</td>
</tr>
<tr>
<td>G13D</td>
<td>3,73</td>
<td>R175L</td>
<td>3,73</td>
<td>R1450*</td>
<td>5,22</td>
</tr>
<tr>
<td>G12V</td>
<td>2,24</td>
<td>C176S</td>
<td>1,49</td>
<td>Q1367*</td>
<td>2,24</td>
</tr>
<tr>
<td>G12C</td>
<td>0,75</td>
<td>C275Y</td>
<td>1,49</td>
<td>Q1378*</td>
<td>1,49</td>
</tr>
<tr>
<td>G12R</td>
<td>0,75</td>
<td>E287D</td>
<td>1,49</td>
<td>S1434I</td>
<td>1,49</td>
</tr>
<tr>
<td>L65</td>
<td>0,75</td>
<td>P177L</td>
<td>1,49</td>
<td>T1448I</td>
<td>1,49</td>
</tr>
<tr>
<td>V8L</td>
<td>0,75</td>
<td>R175C</td>
<td>1,49</td>
<td>K1370I</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R273C</td>
<td>1,49</td>
<td>K1449*</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C176Y</td>
<td>0,75</td>
<td>K1449E</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E271*</td>
<td>0,75</td>
<td>P1361L</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E287K</td>
<td>0,75</td>
<td>P1443T</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G266*</td>
<td>0,75</td>
<td>Q1367H</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N268I</td>
<td>0,75</td>
<td>S1355F</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P177S</td>
<td>0,75</td>
<td>S1362F</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R267W</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R283C</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1721</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V173A</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: los autores

aa: aminoácido
El análisis de construcción del árbol oncogénico, mediante el paquete en R “oncotree”, mostró probabilidades de ocurrencia independiente entre los eventos mutacionales y la probabilidad de co-ocurrencia cercana a cero, como puede apreciarse en la figura 18.
3.2.4. Análisis molecular en pacientes

CCR – MSI-H - MSI-L

Para realizar la prueba de mutación en el gen *BRAF*, se seleccionaron los 137 pacientes que presentaron inestabilidad microsatelital baja (MSI-L) o alta (MSI-H); 16 pacientes (11,6%) presentaron la mutación *BRAF*V600E,
y un paciente la mutación BRAFV600E. Este último y dos portadores de BRAFV600E pertenecen a las familias descritas en los capítulos posteriores. El promedio de edad fue de 59,1 años. Predominió la localización en el colon derecho. Solo un paciente presentó el fenotipo MSI+, MLH1-, BRAFV600E+. Los pacientes restantes fueron silvestres para BRAF. La comparación de los pacientes mutados con las características clínicas no mostró diferencias significativas entre los grupos. Tabla 25.

Tabla 25. Comparaciones BRAF - características clínico-patológicas

<table>
<thead>
<tr>
<th>Característica</th>
<th>N</th>
<th>SILVESTRE</th>
<th>MUTADO</th>
<th>Dos colas</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n(%)</td>
<td>n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Género</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mujer</td>
<td>62</td>
<td>56(90,3)</td>
<td>6(9,7)</td>
<td>0,231</td>
<td></td>
</tr>
<tr>
<td>Hombre</td>
<td>65</td>
<td>54(83,1)</td>
<td>11(16,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 años</td>
<td>29</td>
<td>23(79,3)</td>
<td>6(20,68)</td>
<td>0,187</td>
<td></td>
</tr>
<tr>
<td>> 50 años</td>
<td>98</td>
<td>87(88,8)</td>
<td>11(11,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derecho</td>
<td>46</td>
<td>37(80,4)</td>
<td>9(19,6)</td>
<td>0,071</td>
<td></td>
</tr>
<tr>
<td>Izquierdo</td>
<td>36</td>
<td>31(86,1)</td>
<td>5(13,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recto</td>
<td>24</td>
<td>24(100)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temprano</td>
<td>40</td>
<td>38(95)</td>
<td>2(5)</td>
<td>0,102</td>
<td></td>
</tr>
<tr>
<td>Avanzado</td>
<td>27</td>
<td>21(77,7)</td>
<td>6(22,3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferenciación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo grado</td>
<td>84</td>
<td>75(89,2)</td>
<td>9(10,8)</td>
<td>0,477</td>
<td></td>
</tr>
<tr>
<td>Alto grado</td>
<td>18</td>
<td>15(83,3)</td>
<td>3(16,7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmunohistoquímica MLH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>69</td>
<td>62(89,9)</td>
<td>7(7,9)</td>
<td>0,512</td>
<td></td>
</tr>
<tr>
<td>Negativo</td>
<td>19</td>
<td>18(94,8)</td>
<td>1(5,2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El análisis multivariado con las variables sociodemográficas y clínico-patológicas no evidenció diferencias significativas entre los grupos.

En la tabla 26 se presentan, a manera de comparación, los datos de los porcentajes de las mutaciones en los genes \textit{TP53}, \textit{KRAS}, \textit{APC} y \textit{BRAF}, reportadas por diferentes autores, y las encontradas en el presente estudio. Se pueden apreciar similitudes en los porcentajes para \textit{KRAS}, y diferencias para los genes \textit{TP53} y \textit{APC}.

\textbf{Tabla 26.} Comparación porcentajes de mutaciones \textit{TP53}, \textit{KRAS}, \textit{APC}, \textit{BRAF}, en CCR
<table>
<thead>
<tr>
<th>Referencia</th>
<th>País</th>
<th>N</th>
<th>KRAS %</th>
<th>TP53 %</th>
<th>APC %</th>
<th>BRAF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al., 2016</td>
<td>Taiwán</td>
<td>997</td>
<td>38,8</td>
<td>29,9</td>
<td>29</td>
<td>6,3</td>
</tr>
<tr>
<td>Levidou et al., 2012</td>
<td>Grecia</td>
<td>94</td>
<td>23</td>
<td>ND</td>
<td>ND</td>
<td>23</td>
</tr>
<tr>
<td>Palacio-Rua, et., al, 2014</td>
<td>Colombia</td>
<td>30</td>
<td>13,3</td>
<td>6,6</td>
<td>23,3</td>
<td>ND</td>
</tr>
<tr>
<td>IARC, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43,8</td>
</tr>
<tr>
<td>Li et al., 2006</td>
<td>Australia</td>
<td>275</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>39</td>
</tr>
<tr>
<td>Raskin, Dakubo, Palaski, Greenson, & Gruber, 2013</td>
<td>Ghana</td>
<td>90</td>
<td>30</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>Sorbye et al., 2015</td>
<td>Suecia</td>
<td>446</td>
<td>35</td>
<td>ND</td>
<td>ND</td>
<td>20,6</td>
</tr>
<tr>
<td>Sakai et al., 2016</td>
<td>Japón</td>
<td>93</td>
<td>49</td>
<td>36</td>
<td>84</td>
<td>13</td>
</tr>
<tr>
<td>Calistrì et al., 2005</td>
<td>Italia</td>
<td>100</td>
<td>23</td>
<td>27</td>
<td>SD</td>
<td>3</td>
</tr>
<tr>
<td>Samowitz et al., 2007</td>
<td>USA</td>
<td>90</td>
<td>21</td>
<td>35</td>
<td>60</td>
<td>ND</td>
</tr>
<tr>
<td>Dallol et al., 2016</td>
<td>Arabia Saudita</td>
<td>99</td>
<td>35</td>
<td>13</td>
<td>36</td>
<td>ND</td>
</tr>
<tr>
<td>Ye et al., 2015</td>
<td>China</td>
<td>535</td>
<td>37,9</td>
<td>ND</td>
<td>ND</td>
<td>4,4</td>
</tr>
<tr>
<td>Hurtado et., al, 2015</td>
<td>Chile</td>
<td>58</td>
<td>27</td>
<td>ND</td>
<td>ND</td>
<td>27</td>
</tr>
<tr>
<td>De Roock et., al, 2010</td>
<td>Europa</td>
<td>1022</td>
<td>40</td>
<td>ND</td>
<td>ND</td>
<td>4,7</td>
</tr>
<tr>
<td>Aisss, et., al 2013</td>
<td>Túnez</td>
<td>51</td>
<td>31,5</td>
<td>59,6</td>
<td>ND</td>
<td>51,2</td>
</tr>
<tr>
<td>Jorissen, et., al, 2015</td>
<td>Australia</td>
<td>746</td>
<td>35,1</td>
<td>55,4</td>
<td>68,4</td>
<td>9</td>
</tr>
<tr>
<td>Martineti et., al, 2014</td>
<td>Albania</td>
<td>159</td>
<td>17,6</td>
<td>ND</td>
<td>ND</td>
<td>6,3</td>
</tr>
<tr>
<td>TCGA, 2012</td>
<td>USA</td>
<td>224</td>
<td>43NH</td>
<td>60NH-20H</td>
<td>81NH-51H</td>
<td>46H</td>
</tr>
<tr>
<td>Sweeney et., al, 2009</td>
<td>USA</td>
<td>971</td>
<td>33</td>
<td>47</td>
<td>ND</td>
<td>9</td>
</tr>
<tr>
<td>Vasovcak, et., 2011</td>
<td>Checoslovacquia</td>
<td>103</td>
<td>31,1</td>
<td>27,2</td>
<td>68,9</td>
<td>8,7</td>
</tr>
</tbody>
</table>

NH=No hiperpmutados, H=hipermutados ND: No determinado

Fuente: los autores
3.2.5. Análisis molecular en casos CCR – Tejido Fresco – Ion Torrent

Se logró realizar el estudio en 10 muestras de tejido tumoral fresco. Se detectaron 68 mutaciones en los 80 genes examinados, en ocho pacientes con resultados validados. El gen con mayor cantidad de mutaciones fue el APC (2008), la mayor parte de las mutaciones fueron no sinónimas (45). El detalle de esta mutaciones se puede apreciar en la tabla 27.

Tabla 27. Mutaciones CCR n= 8 –Tejido Fresco

<table>
<thead>
<tr>
<th>Genes</th>
<th>No sinónimas SNV</th>
<th>Codón de parada SNV</th>
<th>Corrimiento marco de lectura</th>
<th>Sinónimas SNV</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>APC</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>AR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ATM</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ATRX</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AURKA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AURKB</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BRAF</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BRCA1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CCND1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CDH1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ERBB4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FANCC</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FBXW7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>FGFR1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Genes</td>
<td>No sinónimas SNV</td>
<td>Codón de parada SNV</td>
<td>Corrimiento marco de lectura</td>
<td>Sinónimas SNV</td>
<td>TOTAL</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>FGFR2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FGFR3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FLT3</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GNAS</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>JAK2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KDR</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MLH1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NOTCH1</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NPM1</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>PDGFRA</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RB1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SMAD4</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SMARCB1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMO</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STK11</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TET2</td>
<td></td>
<td>1 1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TLR4</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UGT1A1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>XRCC2</td>
<td>1</td>
<td></td>
<td></td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>45 7 5</td>
<td></td>
<td></td>
<td>11</td>
<td>68</td>
</tr>
</tbody>
</table>

Fuente: los autores
El análisis por paciente permitió establecer que los ocho pacientes presentan mutación en más de un gen, e incluso un paciente presenta 19 mutaciones en los genes estudiados. El gen APC presentó una mutación diferente en seis pacientes, seguido de los genes CDH1, GNAS, MLH1 y TP53, cada uno con tres mutaciones; los demás genes presentaron dos o una mutación por paciente. El detalle puede ser observado en la tabla 28.

Tabla 28. Pacientes CCR n= 8 –Tejido Fresco – mutaciones

<table>
<thead>
<tr>
<th>CCR tejido fresco</th>
<th>Cromosoma</th>
<th>Base ref.</th>
<th>Base Cambiada</th>
<th>Localización</th>
<th>GEN</th>
<th>Tipo de mutación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paciente 1</td>
<td>chr12</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>KRAS</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr17</td>
<td>T</td>
<td>C</td>
<td>Exón</td>
<td>TP53</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr22</td>
<td>T</td>
<td>C</td>
<td>Exón</td>
<td>CYP2D6</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr5</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>APC</td>
<td>Codón de parada</td>
</tr>
<tr>
<td></td>
<td>chr8</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>FGFR1</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr17</td>
<td>A</td>
<td>C</td>
<td>Exón</td>
<td>TP53</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>Paciente 2</td>
<td>chr5</td>
<td>A</td>
<td>C</td>
<td>Exón</td>
<td>APC</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr9</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>JAK2</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr4</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>PDGFRA</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr4</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>KDR</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr7</td>
<td>A</td>
<td>T</td>
<td>Exón</td>
<td>BRAF</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr7</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>XRCC2</td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td></td>
<td>chr9</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>TLR4</td>
<td>Codón de parada</td>
</tr>
<tr>
<td>CCR tejido fresco</td>
<td>Cromosoma</td>
<td>Base ref.</td>
<td>Base Cambiada</td>
<td>Localización</td>
<td>GEN</td>
<td>Tipo de mutación</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>chr16</td>
<td>T</td>
<td>C</td>
<td>Exón</td>
<td>CDH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr17</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>AURKB</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr17</td>
<td>T</td>
<td>TAGTA</td>
<td>Exón</td>
<td>BRCA1</td>
<td></td>
<td>Cambio marco de lectura</td>
</tr>
<tr>
<td>chr20</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>GNAS</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr3</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>MLH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr3</td>
<td>C</td>
<td>CCATT</td>
<td>Exón</td>
<td>MLH1</td>
<td></td>
<td>cambio marco de lectura</td>
</tr>
<tr>
<td>chr3</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>PIK3CA</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr4</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>FGFR3</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr4</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>FBXW7</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr5</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>APC</td>
<td></td>
<td>Codón de parada</td>
</tr>
<tr>
<td>chr5</td>
<td>G</td>
<td>GA</td>
<td>Exón</td>
<td>APC</td>
<td></td>
<td>Cambio marco de lectura</td>
</tr>
<tr>
<td>chr7</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>EGFR</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr9</td>
<td>A</td>
<td>G</td>
<td>Exón</td>
<td>ABL1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr9</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>NOTCH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr9</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>NOTCH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr10</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>RET</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr10</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>FGFR2</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr11</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>CCND1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr13</td>
<td>C</td>
<td>CAG</td>
<td>Exón</td>
<td>RB1</td>
<td></td>
<td>Cambio marco de lectura</td>
</tr>
<tr>
<td>CCR tejido fresco</td>
<td>Cromosoma</td>
<td>Base ref.</td>
<td>Base Cambiada</td>
<td>Localización</td>
<td>GEN</td>
<td>Tipo de mutación</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>chr16</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>CDH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr20</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>AURKA</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr20</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>GNAS</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr5</td>
<td>G</td>
<td>T</td>
<td>Exón</td>
<td>APC</td>
<td></td>
<td>Codón de parada</td>
</tr>
<tr>
<td>chr12</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>KRAS</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr18</td>
<td>C</td>
<td>A</td>
<td>Exón</td>
<td>SMAD4</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr2</td>
<td>T</td>
<td>C</td>
<td>Exón</td>
<td>ERBB4</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr3</td>
<td>C</td>
<td>T</td>
<td>Exón splicing</td>
<td>MLH1; MLH1</td>
<td></td>
<td>Codón de parada</td>
</tr>
<tr>
<td>chr3</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>PIK3CA</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr4</td>
<td>G</td>
<td>GA</td>
<td>Exón</td>
<td>TET2</td>
<td></td>
<td>Cambio marco de lectura</td>
</tr>
<tr>
<td>chr4</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>FBXW7</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr5</td>
<td>C</td>
<td>A</td>
<td>Exón</td>
<td>APC</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr5</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>NPM1</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr9</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>FANCC</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr9</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>NOTCH1</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr10</td>
<td>G</td>
<td>T</td>
<td>Exón</td>
<td>RET</td>
<td></td>
<td>Codón de parada</td>
</tr>
<tr>
<td>chr10</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>RET</td>
<td></td>
<td>Sinónima SNV</td>
</tr>
<tr>
<td>chr10</td>
<td>C</td>
<td>T</td>
<td>Exón</td>
<td>RET</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
<tr>
<td>chr11</td>
<td>G</td>
<td>A</td>
<td>Exón</td>
<td>C11orf30</td>
<td></td>
<td>No sinónima SNV</td>
</tr>
</tbody>
</table>
El análisis por cromosoma evidenció que el mayor número de mutaciones por cromosoma, está en el cromosoma 5, con nueve mutaciones de diferente tipo, seguido del cromosoma 9, con ocho mutaciones. No se encontraron mutaciones en los cromosoma 6, 14, 15, 19 y 21. El detalle se puede apreciar en la figura 19.
El análisis de las mutaciones presentadas en los ocho pacientes evidenció, en 32 variantes, alta probabilidad de patogenicidad por las predicciones PolyPhen-v2 y SIFT, con valores p significativos, distribuidas en diferentes genes, frecuentemente asociados a malignidades, en este caso, específicamente, al CCR. Entre ellas se cuentan: APC, KRAS, TP53, CDH1, MLH1, SMAD4, PIK3CA, BRAF, algunas recientemente relacionados con CCR y otros tipos de cáncer, como XRCC2, ABL1, ERB4, NOTCH1, FBXW7, ATRX, JAK2, PDGFRA. El 75% (24/32) de estas variantes son no sinónimas y el 25% (8/32) son de tipo “stop” y producen un codón de parada.

En la base de datos dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/ se encuentran reportadas siete de las variantes encontradas, a saber: 1. rs121912666 del gen TP53 c.659A>G (p.Tyr220Cys), con patogenicidad asociada al síndrome de Li-Fraumeni. 2. rs113488022, BRAF c.1799T>A (p.Val600Glu), variante patogénica asociada CCR, carcinoma papilar de tiroides, tumores de células germinales no seminomatosos, melanoma, astrocitomas de bajo grado, carcinoma de pulmón de célula no pequeña, todas neoplasias malignas agresivas y, a excepción del carcinoma de tiroides, de alta mortalidad. 3. rs121913279 del gen PIK3CA c.3140A>T(p. His1047Leu), c.3140A>G(p.His1047Arg), variantes patogénicas asociadas a múltiples tipos de cáncer, como CCR, glándula mamaria, ovario, estómago e hígado, todos carcinomas agresivos y con alta mortalidad en
Colombia. 4. Las siguientes variantes de KRAS rs121913529: c.35G>C (p. Gly12Ala), c.35G>T (p. Gly12Val), c.35G>A (p. Gly12Asp), patogénicas e igualmente asociadas a malignidad en CCR, leucemias, carcinoma de pulmón, ovario y páncreas; 5. rs63751615, MLH1 c.676C>T (p. Arg226Ter), variante patogénica asociada a síndromes como Turcot y Lynch. 6. rs104886003, PIK3CA c.1633G>A (p. Glu545Lys), variante patogénica en CCR, cáncer de ovario, de glándula mamaria y de estómago. 7. rs28934578 TP53 c.524G>T (p. Arg175Leu), variante asociada a síndromes de predisposición a cáncer.

Las variantes restantes deben ser sometidas a validación y a pruebas funcionales, y no tienen reporte en la base dbSNP.
Capítulo 4

DISCUSIÓN
4.1. Aspectos clínico-patológicos

En el presente estudio, además del perfil genético de pacientes colombianos con CCR, cuya muestra abarca ciudades localizadas a lo largo del centro del país, se examinaron las características clínico-patológicas y las diferencias en presentación de los tumores entre pacientes menores y mayores de 50 años, teniendo en cuenta aspectos tales como el género, la edad, la localización y el tipo del tumor, y, finalmente, la correlación entre el estado tumoral, y el estado ganglionar.

4.1.1. Género

La relación encontrada mujeres: hombres es de 1,13: 1 (53,2% para mujeres y 46,8% en hombres), diferente a la reportada por otros autores, con proporciones mayores para hombres. Por ejemplo, en Estados Unidos, la estima de CCR en poblaciones hispánicas fue de 6.400 nuevos casos para hombres y 5.300 para mujeres. (R. L. Siegel, Fedewa, et al., 2015). Igual, para los reportes de la Agencia Internacional de Cáncer, a nivel mundial, con una incidencia para hombres de 10,1%, una tasa de 20,6 por 100.000 / año, estandarizada por edad ASR (W) y para mujeres 9,2% y tasa de 14,3 (Torre et al., 2015); Faceli et. al, 52,4% en hombres y 47,6% en mujeres, y Safaee, et al., 56% en hombres y 44% en mujeres (Fazeli, Adel, & Lebaschi, 2007; Safaee et al., 2012); McPhail, et al., 56,5% para hombres y 43,5% para mujeres (McPhail, Johnson, Greenberg, Peake, & Rous, 2015). En china, Zheng, et al., con tasas ASR (W) de 18,48 para hombres y 13,40 para mujeres (Zheng, Zheng, Zhang, & Chen, 2014); Aissi, en Túnez, 58,8% en hombres y 41,2% en mujeres (Aissi et al., 2013); Murphy, en Estados Unidos, encontró tasas
ajustadas más altas en hombres que en mujeres, con diferencias asociadas a la etnia y la localización (Murphy et al., 2011); en Singapure, De Kok et al., reportaron, entre 1968 y 2002, un aumento en la incidencia de CCR mayor en hombres (de Kok et al., 2008). Algunos autores soportan este hallazgo en el efecto protectivo de los estrógenos sobre la patogénesis de CCR. (Hoffken, Leichsenring, & Reinacher-Schick, 2015).

De otra parte, las estimaciones disponibles para Colombia en GLOBOCAN, para nuevos casos de CCR, año 2015, son: 3.400 para mujeres y 2.968 para hombres (IARC, 2015). En un estudio de 50 años en la ciudad de Cali, Bravo et al. encontraron una rata de incidencia prácticamente idéntica en ambos géneros (Bravo, 2012); y Cortés et al., en un estudio desde 1962 hasta 2007, también en la ciudad de Cali, encontraron tasas crudas de incidencia mayores en mujeres, en todos los períodos evaluados (Cortés, 2014). Los datos de este estudio se acercan a los registros del Instituto Nacional de Cancerología de Colombia, con tasas ajustadas de 9,71 para hombres y 9,68 para mujeres, en el período de 2002 a 2006 (INC, 2015), único reporte para Colombia con predominio de CCR en hombres, y a los del estudio de Uribe en Bucaramanga con 8,9 para mujeres y 8,1 para hombres. (Uribe, Osma, & Herrera, 2012).

En algunos países, como Chipre, Cooter et al. reportaron, entre 1998 y 2008, una tasa de incidencia ajustada a la edad, de 4,71 para hombres y 6,94 para las mujeres. (Cooter et al., 2015).

Se deben realizar estudios epidemiológicos que permitan definir las disparidades relacionadas con el género, estableciendo una relación con variables como la edad, analizando factores como la progresión y la sobrevida a la enfermedad. (Purim, Gordon, & Brenner, 2013).

4.1.2. Edad

La media de edad encontrada fue de 57,43 años, menor a la reportada en diferentes estudios a nivel mundial, especialmente en países desarrollados, con medias desde 64 a 72 años. (Brenner, Kloor, & Pox, 2014; Dodou & de Winter, 2012; Domingo et al., 2013; Ghazi, Berg, Lindblom, & Lindforss, 2013; Hansen & Jess, 2012; Karanikas & Esebidis, 2016; McKay et al., 2014; Millan
et al., 2015; Purim et al., 2013; Wu et al., 2012). Por el contrario, en países como Irán (Mahmodlou, Mohammadi, & Sepehrvand, 2012) y Zimbabwe la media encontrada fue de 55 años. (Katsidzira, Gangaizdo, Mapingure, & Matenga, 2015). En un estudio de diferentes ciudades de Asia la edad media fue de 54,4 años. (Dodou & de Winter, 2012). Algunas evidencias recientes sugieren un incremento de casos de CCR en menores de 50 años. (Ahnen et al., 2014; Alqahtani et al., 2016; Bailey et al., 2015; Bouassida et al., 2012; Koh et al., 2015; McPhail et al., 2015; Meyer et al., 2010; Montenegro, Ramirez-Castro, Isaza, Bedoya, & Muneton-Pena, 2006; Rotimi & Abdul Kareem, 2014; Siddique et al., 2016; R. Siegel, Desantis, & Jemal, 2014; R. L. Siegel, Jemal, & Ward, 2009; Singh, Taylor, Pan, Stamos, & Zell, 2014; R. Wang, Wang, & Ping, 2015; You, Xing, Feig, Chang, & Cormier, 2012). Existen factores que influyen en el desarrollo del CCR en edades tempranas, entre los que se cuentan: factores hereditarios, ambientales, del estilo de vida (dieta, cigarrillo, alcohol) y de ancestria. (Inra & Syngal, 2015; Rahman et al., 2015). Algunos estudios reportan heterogeneidad en las manifestaciones clínicas de los pacientes con CCR menores de 50 años. (Q. Li et al., 2014). Este hecho impide establecer criterios etiopatogénicos claros, y hace necesario descartar, en primera instancia, un síndrome con agregación familiar, antes de afirmar que se trata de un CCR de inicio temprano. (Tezcan, Tunca, Ak, Cecener, & Egeli, 2016). También se debe considerar que este aumento de casos en personas jóvenes (Campos, 2017) puede explicarse, en parte, por el cambio en la pirámide poblacional (Koh et al., 2015; MinSalud, 2013). Se debe tener en cuenta el factor etario para implementar estrategias de tamizaje a edades más tempranas, especialmente con el aumento en las tasas de incidencia y el mínimo cambio en las tasas de mortalidad. (Bravo, 2012; Pineros, Gamboa, Hernandez-Suarez, Pardo, & Bray, 2013; Pineros, Hernandez, & Bray, 2004; Wu et al., 2012).

El análisis de los pacientes menores de 50 años (340 personas), indica que el 16,76% de ellos tenía antecedentes de cáncer en primer y segundo grado de consanguinidad. Estos resultados son comparables con los encontrados a nivel mundial, que oscilan entre el 10 y el 30%. (Brosens, Offerhaus, & Giardiello, 2015; de la Chapelle, 2004; Fatemi et al., 2010; Fearon, 2011; Hegde, Ferber, Mao, Samowitz, & Ganguly, 2014; Jasperson, Tuohy, Neklason, & Burt, 2010; Kastrinos & Syngal, 2011). Este porcentaje debe tenerse en cuenta al momento de establecer las estrategias de prevención de la enfermedad. En referencia a la edad de aparición del CCR, se puede
afirmar que el porcentaje de casos en pacientes jóvenes, sin antecedentes de cáncer, ha aumentado en Colombia, al igual que en USA. (Kirzin et al., 2014; Silla et al., 2014). Estos casos son referidos por los autores como agresivos, de localización distal y sin características histológicas específicas (Tanskanen et al., 2015).

Los resultados de este trabajo aportan datos para afinar las estrategias en salud pública, en cuanto a prevención del CCR en Colombia, ya que los menores de 50 años de este estudio y las mujeres presentan una mayor asociación con el riesgo respectivo (1,8 y 1,5) de padecer CCR, si tienen antecedentes familiares, razón por la cual el tamizaje para la enfermedad debe tener en cuenta los criterios de género, edad y antecedentes. (Fedewa et al., 2015).

4.1.3. Localización

En esta investigación, el recto (31,1%) y colon distal (21,8%) fueron los más afectados. Esto, en contraste con otros trabajos (G. H. Lee et al., 2015; Omranipour, Doroudian, & Mahmoodzadeh, 2012; Rozen, Liphshitz, & Barchana, 2012) que indican que hay un aumento en la prevalencia de los casos de CCR en el colon derecho. Otros estudios muestran un aumento en la incidencia de CCR en recto, en la población menor de 50 años. (Ahnen et al., 2014; Berian, Benson, & Nelson, 2015; Meyer et al., 2010; R. L. Siegel et al., 2009; R. Wang et al., 2015; Yantiss et al., 2009; You et al., 2011).

Los pacientes con CCR distal y rectal, además de exhibir síntomas más tempranos y diferencias en el pronóstico, presentan origen embriológico, funcionalidad digestiva y expresión génica diferentes, al ser comparados con los provenientes de otros tipos de localizaciones. (Silla et al., 2014; Tamas et al., 2015). El acceso a los diferentes métodos de tamizaje puede estar influenciando los índices de prevalencia relativa de los casos de CCR proximales y distales; sin embargo, cabe anotar que los pacientes de este estudio no se sometieron a ningún tamizaje, en consecuencia, es probable que la alta proporción de casos de CCR rectales y distales se explique por los síntomas más tempranos que producen, a saber: rectorragia, tenesmo y cambios en el hábito intestinal (Del Giudice et al., 2014), que hacen que los pacientes consulten para diagnóstico y tratamiento.
En este estudio se encontró una relación de los tipos histológicos mucinoso y anillo de sello, con los pacientes menores de 50 años, lo cual es similar en otros reportes. (Benmoussa et al., 2012; Dakubo, Naaeder, & Gyasi, 2014; Siddique et al., 2016; Tawadros et al., 2015; Yeo, Chew, Koh, & Tang, 2013). Es de resaltar que estos tipos histológicos son más agresivos, por su escasa cohesividad, mayor tendencia a diseminarse y mal pronóstico. (Arifi, Elmesbahi, & Amarti Riffi, 2015; J. S. Chen et al., 2010; Fu et al., 2014; Hyngstrom et al., 2012; Park et al., 2015). Los carcinomas mucinosos pueden expresar diferencias moleculares con su contraparte de tipo usual, que puede influir en el pronóstico de la enfermedad. (Foda, El-Hawary, & Aziz, 2015).

4.1.4. Correlación entre tamaño tumoral y el estado ganglionar

A pesar de que atendiendo a la categoría T (tamaño del tumor), el 75% de los casos se clasificaron en la T avanzada (profundidad de invasión del tumor), con compromiso de la muscular o la serosa (revestimiento peritoneal visceral) (Maguire & Sheahan, 2014; Obrocea et al., 2011), solo el 32% reportan compromiso de los ganglios linfáticos regionales. La razón de esta discrepancia es el escaso número de ganglios linfáticos reportados; aunque algunos estudios afirman que aproximadamente en el 50% de los casos de CCR se obtienen pocos ganglios para estudio (S. L. Chen & Bilchik, 2006; Le Voyer et al., 2003; Prandi et al., 2002), la recomendación internacional es estudiar como mínimo 12 ganglios linfáticos en el espécimen de resección. (Duraker, Civelek Caynak, & Hot, 2014; Resch & Langner, 2013; Smith et al., 2010). De otra parte, la causa de no encontrar en los reportes de patología un número mayor de ganglios puede estar relacionada con: la dimensión de la resección ganglionar, la minuciosidad del patólogo en la disección y el número de ganglios linfáticos en el sitio del tumor. Además y, en forma directa, con el uso de quimio/radio-terapia para los casos de carcinoma rectal. (Bhatti et al., 2015). Algunas revisiones recientes indican que las linfadenectomías amplias no necesariamente se relacionan con una mayor sobrevida (Willaert et al., 2014); sin embargo, el estado de los ganglios linfáticos es un factor pronóstico y el criterio más importante que determina la terapia coadyuvante para los pacientes. (Resch et al., 2015; Resch & Langner, 2013). Existen técnicas que mejoran
la obtención de ganglios en el momento de la disección, como son el uso de azul de metileno y el aclaramiento del tejido adiposo, que son de fácil implementación. (Langman, Patel, & Bowley, 2015).

4.1.5. Estado TNM

En esta serie de pacientes, al igual que lo reportado en la literatura, en países en vías de desarrollo la mayoría de los pacientes se diagnóstica en estados avanzados, lo que explica la alta tasa de mortalidad en estos países con recursos limitados, como el nuestro. (INC, 2015; Pou, Osella, Eynard, Niclis, & Díaz Mdél, 2009; Zarate, Alonso, Garmendia, & Lopez-Kostner, 2013). En países desarrollados la enfermedad es detectada en estados tempranos con compromiso sólo loco-regional (Purim et al., 2013; R. L. Siegel, Miller, & Jemal, 2015), aun cuando un estudio irlandés mostró que hasta un 50% de los casos fueron diagnosticados en estados avanzados. (Clarke, McDevitt, Kearney, & Sharp, 2014).

La correlación positiva encontrada en este estudio entre los tamaños avanzados del tumor, el compromiso ganglionar y los tipos histológicos agresivos (mucinoso y anillo de sello) en los pacientes menores de 50 años es una voz de alerta ante la urgente necesidad de implementar modificaciones en las estrategias de prevención y diagnóstico temprano en nuestro país.

Una de las limitaciones del estudio es que no se contó con datos de localización para 347 pacientes (27,2%) por déficit en la rigurosidad para completar los registros clínicos (Lanza, Messerini, Gafa, & Risio, 2011), lo cual es frecuente en los países en vías de desarrollo.

La epidemiología del CCR en los países desarrollados es diferente a los países en vía de desarrollo, en los cuales usualmente se presenta con menor incidencia, mayor frecuencia en personas más jóvenes, localización en el colon distal, pobre diferenciación, mayor mortalidad y menor presencia de adenomas. (Arnold et al., 2016; IARC, 2015; Saika & Machii, 2016; R. Siegel et al., 2014).
4.2. Correlación entre características clínicas, MSI – IHC - BRAF

Obtener amplificaciones y resultados analizables en este tipo de técnica representa un avance en la eficiencia de las pruebas moleculares, dado que el tejido incluido en parafina está fragmentado y el diseño de cebadores es complejo; sin embargo, el rendimiento de estas pruebas en el tejido fresco es cercano al 100%.

El porcentaje de pacientes estables para los microsatélites - MSS en el presente estudio (32%) no es tan alto como el reportado en otras series de pacientes, en las cuales se oscila entre el 59% y el 91%. (Deschoolmeester, Boeckx, et al., 2010; Krivokapic et al., 2012; Raskin, Dakubo, Palaski, Greenson, & Gruber, 2013; Sorbye et al., 2015).

Las asociaciones de los pacientes con MSS con tumores grandes avanzados (T3 y T4) (55% versus 39%), compromiso ganglionar positivo (60,8% versus 37,3%) y pobre diferenciación (31% versus 21%) está acorde con las publicaciones que relacionan a los tumores MSS, con un mal pronóstico, y la presencia de MSI-H con un mejor pronóstico. (Nazemalhosseini Mojarad et al., 2016; Ogino & Goel, 2008).

Los resultados de nuestra cohorte de pacientes con CCR, evidencian un 23% con MSI-H, más alto que el reportado en otras series (Ashktorab, Ahuja, et al., 2016; Batur, Vuralli Bakkaloglu, Kepil, & Erdamar, 2016; Greenson et al., 2009; Gupta et al., 2010; Kamat, Khidhir, Alashari, & Rannug, 2013; Kanth et al., 2014; Shima et al., 2011), probablemente asociado al porcentaje de pacientes jóvenes en la muestra, los antecedentes familiares y/o factores ambientales. De los casos analizados, el 100% del tipo histológico anillo de sello presentó alta inestabilidad microsatelital, comparado con el 36% de los tipos mucinosos, lo cual es similar a lo reportado en otros estudios. (Shia et al., 2003). Los resultados son diferentes con respecto a la localización -colon derecho con mayor frecuencia de MSS (42%)- y el grado histológico alto. (31% en MSS versus 21% en MSI-H) (Hall et al., 2010; Raut, Pawlik, & Rodriguez-Bigas, 2004). Diferentes series han reportado que el estatus MSI-H, es indicador de un pronóstico favorable, independientemente de que esté asociado con tipos histológicos agresivos, como son el mucinoso y
anillo de sello (Jung, Kim, & Kim, 2016; Raut et al., 2004), hecho que también resalta la importancia de implementar estas técnicas en el diagnóstico de los pacientes con CCR. (Kaya et al., 2017; Vakiani, 2017).

Los pacientes de CCR, con MSI-H, se asociaron más a pérdida de la expresión de la proteína MLH1 (24%), que los de CCR estables (12%), p=0,000, hecho que se compara con estudios previos que indican que estas pruebas son útiles como tamizaje para CCR con agregación familiar. (Alqahtani et al., 2016; Boissiere-Michot et al., 2016; Ortiz et al., 2016; Setaffy & Langner, 2015; Shamekh, Cives, & Coppola, 2016). Así mismo, estos resultados deben tenerse en cuenta en la era de la medicina personalizada, en la cual, los pacientes MSI-H pueden beneficiarse o no de algunos tratamientos, como 5-Fluorouracilo y terapias inmunomoduladoras, entre otros. (Gatalica, Vranic, Xiu, Swensen, & Reddy, 2016; Kim, 2016; Kudryavtseva et al., 2016).

La conjunción de las técnicas de inestabilidad microsatelital e inmunohistoquímica permitió realizar un tamizaje de los casos con agregación familiar en el 4,7% de los casos, lo cual está de acuerdo con lo reportado; en este porcentaje hay predominio de localización en el colon derecho y asociación a los tipos histológicos mucinoso y anillo de sello. También se estableció una sensibilidad de la prueba de inmunohistoquímica de MLH1 para la detección de MSI+ en un 71% del total de casos, con especificidad del 62%, no tan alta como la reportada en otros estudios (Becouarn et al., 2005; Shia et al., 2005; Siddique et al., 2016) y muy probablemente relacionada con los siguientes hechos: 1. Se probó sólo una de las proteínas MLH1 y no todas, (MSH2, MSH6, PMS2). 2. Se realizó la prueba en biopsias pequeñas. 3. La tinción de las placas es débil, debido a defectos de fijación. (Shia, 2008). La mayoría de estudios con IHC usan más de una proteína en la prueba (Shia et al., 2009); sin embargo, la sensibilidad en este trabajo está dentro del rango reportado por otros estudios (62% - 89%). (Hendriks et al., 2003; Niessen et al., 2006).

Los análisis de variables, como la edad, el género o el estado no mostraron diferencias en la expresión del MLH1. En otras series de casos se han encontrado diferencias con la edad. (Luevano-Gonzalez et al., 2011). En el presente estudio se encontró asociación con la localización del tumor en el lado derecho, al igual que en otros estudios. (Sekal et al., 2015; Waldmann et al., 2015).
Los estudios internacionales recomiendan que en regiones con recursos económicos limitados para realizar tamizaje para síndromes con agregación familiar, la primera prueba que se debe hacer es la IHC. (Colling et al., 2015; South et al., 2009).

El fenotipo MSI-H, \(\text{BRAF} \ V600E \) se presenta entre el 10% y el 20% de los casos de CCR (Setaffy & Langner, 2015), de los cuales sólo del 3% al 5% corresponden a síndrome de Lynch; el resto corresponde a CCR esporádico. En el presente trabajo este fenotipo corresponde al 12,6% de los casos, de los cuales 11% no reporta antecedentes familiares de cáncer, ni histología sugestiva de Lynch (mucinoso, infiltrado linfocitico), hecho que se ha asociado a déficit en el sistema MMR, por metilación de islas CpG “CpG island methylator phenotype” (CIMP) -fenotipo metilado- u otros mecanismos de metilación en diversos genes (\(\text{RASSF2, SOX5, GALNT14, etc} \) (Bae, Kim, & Kang, 2016; Jia, Gao, Zhang, Hoffmeister, & Brenner, 2016; Murcia et al., 2016; Sawada et al., 2016), lo mismo que a factores medioambientales relacionados con metilación, como el hábito de fumar o ingerir alcohol, o también a los componentes de la dieta. (Sekal et al., 2015). Debe tenerse en cuenta que de estos pacientes, siete tienen conservada la expresión de MLH1, nueve no tienen resultado de IHC y sólo uno tiene pérdida de la expresión de MLH1. Este fenotipo debe indagarse en estudios subsiguientes, aumentando el número de pacientes y realizando pruebas de IHC para el resto de proteínas del sistema MMR. Otros estudios han encontrado la presencia de este fenotipo en mayor frecuencia, 67%, con buena capacidad para diferenciar los casos esporádicos de los germinales en quienes expresan en fenotipo MSI-H, \(\text{BRAF} \ V600E \). (Waldmann et al., 2015). Sólo dos pacientes (1,4%) presentan el fenotipo MSI-H, \(\text{BRAF} \ V600E \) y corresponden a síndromes con agregación familiar; este hallazgo es interesante, en la medida en que diversos autores han reportado que la mutación \(\text{BRAF} \ V600E \) no se presenta en casos de CCR con agregación familiar. (Duraturo et al., 2015).

La mutación \(\text{BRAF} \ V600E \) en CCR se estima en cerca del 10%, en casos no seleccionados. (D’Haene et al., 2018; W. Q. Li et al., 2006; Lubomierski et al., 2005; Marzouk & Schofield, 2011; Samowitz et al., 2005; Sayagues et al., 2018). Este porcentaje es menor en casos de CCR con MSS, 4%, mientras que en los casos de CCR con MSI-H asciende, yendo del 27% al 52%. (Koinuma et al., 2004; W. Q. Li et al., 2006; Samowitz et al., 2005). Los
tumores mutantes se asocian más con el género femenino, tener 60 años o más, localización proximal, pobre diferenciación y estados avanzados de la enfermedad. (D. Chen et al., 2014; Ye et al., 2015). En el presente estudio no se encontraron diferencias significativas con las variables clínicas descritas. Muy probablemente, estos resultados tienen que ver con el hecho de que el número inicial de muestras (1.278) se redujo a 575, debido a que fue imposible obtener muestras de tumor para todos los casos, dado que el material incluido en parafina suele consumirse en los análisis clínicos de los pacientes. Hay marcadas diferencias en la presentación de la mutación, desde porcentajes bajos (3% a 5%) en países orientales (Mao et al., 2012; Shen et al., 2011), hasta un poco más altos (alrededor de 15%) en occidente. (Naguib et al., 2010; Shaukat, Arain, Thaygarajan, Bond, & Sawhney, 2010; Zlobec, Bihl, Schwarb, Terracciano, & Lugli, 2010). El 11,6% de BRAF V600E encontrado en este trabajo es similar al reportado en otros estudios. (Kalady et al., 2012; Levidou et al., 2012); sin embargo, este hallazgo es un importante aporte para las decisiones terapéuticas, en la medida en que se asocia como marcador de resistencia de las terapias anti-EGFR. (Loupakis et al., 2009; Vakiani, 2017).

Durante el proceso de carcinogénesis colorrectal, las mutaciones en BRAF y KRAS ocurren tempranamente durante la transición de un adenoma pequeño a uno de mayor tamaño; en los casos de CCR esporádico con MSI, se sugiere hipermetilación del promotor de los genes MMR, que se correlaciona con mutaciones en BRAF (Levidou et al., 2012); sin embargo, a diferencia de otros estudios, en los que las mutaciones en BRAF se correlacionaron completamente con la pérdida de la expresión de la proteína MLH1 y con los datos clínico-patológicos, en el presente estudio el 12,5% no presentó esta correlación (Ye et al., 2015). Los resultados, muy probablemente, estén asociados al tamaño final de la muestra. Otros estudios han mostrado asociación de la mutación BRAF con las variables clínico-patológicas, como la edad menor de 50 años, el género femenino y el colon derecho. (Phipps et al., 2012). Es posible que en los casos de CCR de nuestra serie la mutación BRAF esté asociada a factores, como: otra vía de carcinogénesis colorrectal, la ancestría, los determinantes medioambientales o la sensibilidad de la prueba, por lo que es necesario confirmar estas hipótesis en estudios basados en un número mayor de muestras, como se postuló en el trabajo de Rozek. (Rozek et al., 2010). Es importante resaltar que el 11,6% de los pacientes de esta
cohorte son portadores de la mutación \textit{BRAF}, y que esta se asocia con un mal pronóstico, tanto como \textit{KRAS}. (Sinicrope \textit{et al.}, 2015; Thiel & Ristimaki, 2013; Wange fjord \textit{et al.}, 2013).

\section*{4.3. Perfil mutacional del CCR esporádico}

En el presente estudio, la presentación de las mutaciones para los genes \textit{KRAS} (23,9\%), \textit{TP53} (63,4\%) y \textit{APC} (40,3\%) se encuentra cercana a los promedios para reportes en Europa (Deschoolmeester, Boeckx, \textit{et al.}, 2010; Oden-Gangloff \textit{et al.}, 2009b), África (Raskin \textit{et al.}, 2013) y Asia (Berg, Danielsen, \textit{et al.}, 2010; Malhotra \textit{et al.}, 2013).

Se compararon los datos de este estudio con los resultados de otra cohorte de pacientes colombianos de Palacio-Rua \textit{et al.}, en 2014, en los que se reportan frecuencias inferiores en todos los genes y no se evaluó \textit{BRAF}. Nuestro reporte de mutaciones para \textit{TP53} es mayor que el de todos los otros estudios, incluso los de la IARC, 2016. Para \textit{KRAS} hay mayor homogeneidad, con un valor máximo de 63\%, de la cohorte italiana, reportado por Loupakis \textit{et al.}, en 2009. También existe mucha variabilidad con los reportes de las mutaciones en \textit{BRAF} con porcentajes bajos, de 4\%, reportados por Chen \textit{et al.}, en China, 2014, y altos, de 23\%, reportados por Levidou \textit{et al.}, en 2012, en Grecia.

En este estudio, el 75,4\% (101/134) de los pacientes con CCR presentó al menos una mutación en los genes probados (\textit{TP53, KRAS, APC}), lo cual evidencia el rendimiento de las pruebas moleculares en tejido incluido en parafina, similar a estudios previos con este tejido y a las recomendaciones de expertos, debido que este tejido presenta fragmentación del ADN y, especialmente para \textit{KRAS}, pueden presentarse falsos positivos. (De Roock \textit{et al.}, 2010; Herreros-Villanueva \textit{et al.}, 2011; C. Tan & Du, 2012).

\subsection*{4.3.1. Gen \textit{TP53}}

El gen supresor tumoral \textit{TP53} juega un papel crucial en la respuesta al estrés celular, componente de los puntos de control del ciclo celular,
el cual, a su vez, es responsable de la integridad del genoma, induciendo la detención del ciclo celular y la apoptosis, procesos dependientes de diferentes tipos de lesión celular, como el daño del ADN. Las mutaciones del gen TP53 están involucradas en la reprogramación metabólica del tumor que promueve la invasión y la progresión del cáncer. (Fesler, Zhang, & Ju, 2016; Miliani de Marval & Zhang, 2011). De las mutaciones en TP53 reportadas para CCR, alrededor del 50% se reportan en cinco codones o puntos calientes hotspots, 175, 245, 248, 273 y 282; las mutaciones en el codón 175 son las más frecuentes en el colon, y las del codón 288 en el recto. (Naccarati et al., 2012; Russo et al., 2005; Tominaga et al., 2010; Vidaurreta et al., 2008). Estos datos se correlacionan con los encontrados en el presente estudio. Las mutaciones en adenomas son raras, por lo que las alteraciones en el gen podrían ser un evento tardío en la progresión del adenocarcinoma (Iacopetta et al., 2006); sin embargo, en un estudio reciente se evidenció la presencia de mutaciones en TP53 en estados tempranos del cáncer; además, se reportó acumulación de mutaciones y expansión clonal de las células tumorales con posibilidades de infiltración a la submucosa por el tumor. (Sakai et al., 2016).

De acuerdo con el reporte de Brosh & Rotter (2009), en el patrón de mutaciones encontrado predominaron las sustituciones missense. Según la Agencia Internacional de Investigación en Cáncer -IARC- el porcentaje para CCR (2016) es 43,28%. El porcentaje de mutaciones encontradas en nuestro estudio es mayor que el reportado por la IARC, por otros estudios latinoamericanos (De Moura Gallo, Azevedo, De Moraes, Olivier, & Hainaut, 2005) y por otra cohorte colombiana. (Palacio-Rua, Isaza-Jimenez, Ahumada-Rodriguez, & Muneton-Pena, 2014).

Con la predominancia de mutaciones en TP53, encontrada en la serie de pacientes colombianos, se abren las puertas para analizar aspectos como: a) Factor predictivo de respuesta a la radioterapia en pacientes con CCR, de localización rectal (M. B. Chen et al., 2012) y respuesta a la quimioterapia anti-EGFR. (Lo Nigro et al., 2016). b) Búsqueda de síndromes familiares como Li-Fraumeni. (Zampiga et al., 2016). c) Heterogeneidad intra e intertumoral en casos de CCR metastásico (Kogita et al., 2015) y CCR sincrónico o metacrónico (K. P. Kim et al., 2016), con el fin de que el perfil molecular permita acercarse a la medicina personalizada. d) Estudio de rearreglos cromosómicos relacionados con la mutación (R175H), que es
la más frecuente no solo en esta, sino en otras investigaciones. (Samassekou et al., 2014). e) Búsqueda de otras fuentes de disfunción de las proteínas, especialmente en TP53 y KRAS, por ejemplo, alteraciones en los telómeros, fusiones y acortamientos críticos, que juegan un rol en la carcinogénesis del CCR. Algunos estudios al respecto pueden ayudar a dilucidar la relación entre las dinámicas de disfunción telomérica y la carcinogénesis humana. (Tanaka et al., 2014). f) Tipo histológico específico que permita establecer un pronóstico, al relacionarlo con cualquiera de los anteriores. (Ikeda et al., 2014; Verdu et al., 2011).

Al hacer el análisis por mutación específica, se encontró que el 52% de las variantes reportadas no se encuentra anotado en la base de datos del NCBI; el 42% (8/19) presenta anotación en la base de datos del NCBI [http://www.ncbi.nlm.nih.gov/clinvar/], tres de las variantes presentan significado patogénico incierto o conflictivo, a saber: R175C, E287K, R283C; dos variantes son probablemente patogénicas: R267W y C176Y, tres variantes se clasifican como patogénicas: R175H, R175L y C275Y, y coinciden con las que se encuentran con más frecuencia en la serie de casos para los pacientes colombianos. La mutación R175H se ha asociado, además, a síndromes con agregación familiar como el de Li-Fraumeni, caracterizado por presentar diferentes malignidades en glándula mamaria, encéfalo, sarcomas y leucemias. (Varley et al., 1995). Su patogenicidad se ha probado en ratones, en los que su presencia se ha asociado con tipos de cáncer similares a los que se presentan en humanos. (Capponcelli et al., 2005). La variante R175L ha sido reportada en carcinomas adrenocorticales pediátricos, asociada también al síndrome de Li-Fraumeni. (Ribeiro et al., 2007). Las variantes también se contrastaron con la base de datos TP53 mutant web site (Leroy et al., 2013), sin anotaciones diferentes.

4.3.2. Gen KRAS

La incidencia de mutaciones en KRAS, para CCR en Europa oscila entre el 25 y el 38% (Brink et al., 2004; Calistri et al., 2005; Conlin, Smith, Carey, Wolf, & Steele, 2005; Esteller et al., 2001; Gil-Raga et al., 2018; König et al., 2001; Palomba et al., 2016); en Estados Unidos, entre el 33 y el 39% (Samowitz et al., 2001; van Engeland et al., 2002), en Asia 29 – 62% (S. C.
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Chang et al., 2016; J. Chen et al., 2014; Jeon, Lee, Shin, & Park, 2008), en África 30% (Raskin et al., 2013); y en Latinoamérica alcanza el 40%. (Ciardiello et al., 2011).

Estas mutaciones en KRAS son dominantes y aparecen en estados tempranos de la carcinogénesis del CCR (adenoma temprano e intermedio), manteniendo una incidencia estable en estados más avanzados (adenomas tardíos y carcinoma); entre un 30% y un 50% de los pacientes presentan mutaciones en KRAS. (Palomba et al., 2016).

El oncogén KRAS, asociado con la carcinogénesis del CCR, transcibe para un RNAm compuesto por 5.765 bases que codifican para 188 aminoácidos. Los exones 1, 2, 3, 4 y 5 contienen 181, 122, 179, 160 y 5.123 pares de bases, respectivamente. (Flicek et al., 2014). La mayoría de las mutaciones somáticas ocurren en los codones 12 y 13 (situados en el exón 2). Otras menos frecuentes ocurren en el exón 3 (codones 59 y 61) y en el exón 4 (codones 117 y 146). (Kislitsin, Lerner, Rennert, & Lev, 2002). Aproximadamente un tercio de los pacientes con CCR, son portadores de mutaciones en los codones G12 y G13, mientras que la mutaciones en los codones 117 y 146 se detectan solo en el 5,5% de los casos. (Janakiraman et al., 2010).

En KRAS, las mutaciones con mayor repetición son, en su orden: G12D (c.35G>A), G12A (c.35G>C) y G13D (c.38_39GC>A), reportadas también en mayor frecuencia en Asia (Dalbol et al., 2016; Q. Wang, Zhong, Lu, Yuan, & Wei, 2012; Ye et al., 2015), en Europa (Martinetti et al., 2014; Perez-Ruiz et al., 2012) y en Latinoamérica (Hurtado et al., 2015), mientras en Colombia la variante G12D presenta un porcentaje menor (13%). En la muestra del presente estudio se encontraron las mutaciones más frecuentemente reportadas en los estudios internacionales en los codones 12 y 13. Al igual que en otros estudios, no se encontraron asociaciones con las variables clínico-patológicas aunque puede decirse que se presentaron más en la mujeres, 25%, que en los hombres, 22,4%, p=0.923. (Aissi et al., 2013; Morris et al., 2014; Wangefjord et al., 2013).

Respecto de las alteraciones funcionales que provocarían las mutaciones descritas en KRAS, estas serían de carácter oncogénico, ya que
las variaciones en los codones 12 y 13 provocan cambios en el loop-P GTP (guanosina trifosfato), que previenen la hidrólisis de GTP y, por lo tanto, activan permanentemente moléculas de RAS. (Jancik, Drabek, Radzioch, & Hajduch, 2010). Las mutaciones en KRAS han sido reportadas en múltiples oportunidades, asociándolas al CCR y a otras malignidades, y se les han realizado análisis funcionales in silico, que determinan que todas las variantes de los codones 12 y 13 son potencialmente patogénicas (Morris et al., 2014); esta asociación a malignidades puede tener que ver con las diferentes combinaciones génicas de origen étnico o con factores propios de la población en cuestión, relacionados con el estilo de vida, como la dieta. (Naser et al., 2014). Si se analizan las anotaciones de estas variantes en el NCBI http://www.ncbi.nlm.nih.gov/clinvar/, puede verse que tres de ellas no se han reportado, por lo tanto, no tienen estudios funcionales. Se trata de las variantes: c.38_39GC>AT, c.16C>T, c.22G>C. El el resto de las variantes: G12D, G12A, G13D, G12V, G12C, G12R se reportan como patogénicas, en asociación con diferentes malignidades, como: leucemia mielomonocítica juvenil (Matsuda et al., 2007), carcinomas pancreáticos (Motojima et al., 1993), nevus epidérmico lineal (Bourdeaut et al., 2010), e incluso con enfermedades crónicas, no malignas, relacionadas con los síndromes de autoinmunidad y homeostasis anormal de leucocitos (Bourdeaut et al., 2010), en carcinoma gástrico (K. H. Lee et al., 1995), carcinomas de pulmón y urotelial en líneas celulares. (Santos et al., 1984). Para CCR se han asociado, las mismas variantes no sólo con el tumor primario (Bagci et al., 2016), sino con las metástasis cerebrales y hepáticas y con el pronóstico en estados avanzados. (Andreatos et al., 2016; Aprile et al., 2016). Aunque se pensaba que los mutantes de KRAS no se beneficiaban de terapias antiEGFR (Lo Nigro et al., 2016; Nemecek et al., 2016; Stintzing et al., 2016), recientemente se reportó que los portadores de la variante G13D podrían tener algún beneficio con esta terapia. (Zhai et al., 2016).

Aun cuando son poco comunes, es importante realizar estudios funcionales de las variantes L6S y V8L, encontradas en este estudio, para entender el significado clínico y biológico de las mismas, dilucidar su impacto clínico y aproximar a los pacientes a los estudios con análisis de supervivencia que indican que las mutaciones en KRAS son marcadores predictivos de resistencia a terapias con anti-EGFR e implican menor sobrevida. (Deschoolmeester, Boeckx, et al., 2010).
4.3.3. Gen APC

En el desarrollo de la mayoría de los casos de CCR está implicado como causa directa el daño en la regulación de varias vías de señal de transducción del gen APC, entre ellas, las wnt, TGFB/ BMP, RTK/Ras y PI3K/Akt. La activación de la vía canónica wnt contribuye a la aparición y progresión de más del 90% de los adenomas y adenocarcinomas colorrectales. (Cancer Genome Atlas, 2012). En ausencia de la función normal del APC hay acumulación de β-catenina, la cual ingresa al núcleo, con la subsecuente inducción de proliferación. La incidencia de las mutaciones en el gen APC ha sido reportada entre el 37% y 56% de la población europea (Conlin et al., 2005), entre el 26% y el 42% de la asiática (Jeon et al., 2008; K. P. Kim et al., 2016; Liu et al., 2018; Yuan, Sun, Zhang, Zhu, & Shi, 2001) y en el 60% de la población de estados Unidos. El porcentaje reportado en Colombia por Palacio-Rua fue del 23,3% (Palacio-Rua et al., 2014), el cual es menor si se compara con los informados por diversos autores. (Conlin et al., 2005; Samowitz et al., 2007; Vasovcak et al., 2011; Worthley et al., 2007). De forma similar, los porcentajes encontrados en el presente estudio fueron menores que los reportados por estudios previos. (Birnbaum et al., 2012). Tampoco se encontraron diferencias significativas con las variables clínicas, en contraste con otros estudios, en los que se encontraron diferencias con el género, el sitio anatómico y la etnia. (Wong, 2010). Es necesario analizar las posibles causas de las diferencias en los porcentajes de las mutaciones en APC, ya que estudios recientes han asociado los fenotipos APC-mut y MSS con tumores de localización proximal y mal pronóstico. (Jorissen et al., 2015).

En el presente estudio se analizó el exón 15 del gen APC, en el cual se localiza la región MCR; las diferencias en los porcentajes de las mutaciones pueden atribuirse a la composición étnica, al tamaño de la muestra, las mutaciones por fuera de MCR, delecciones, reordenamientos, hipermetilación del promotor y la pérdida de heterosigocidad (LOH) de la región. (Bougatef et al., 2008; de la Chapelle, 2004; Pino & Chung, 2010; Vasovcak et al., 2011). En algunos estudios se propone que en las investigaciones donde solo se analiza el grupo de codones de la región mutadora del APC (mutation cluster region – APC o MCR) se puede perder la oportunidad de detectar un porcentaje significativo de mutaciones (Samowitz et al., 2007), o que no se encuentren mutaciones puntuales, que
son más frecuentes por fuera de la MCR, por ejemplo, aquellos pacientes con APC intacto pueden ser portadores de mutaciones en CTNNB1, un gen crítico en la regulación a la baja de la vía de señalización. \textit{wnt} (Vasovcak \textit{et al.}, 2011). Sin embargo, usando como blanco únicamente la MCR, se encuentran las variantes nuevas: K1363N, K1370I, K1449E, P1369L, P1443T, S1355F, T1448I, para las cuales no se encontraron anotaciones ni en el NCBI ni en COSMIC, que aunque, in silico, presentan potencial patogénico. El reto para el futuro, en el grupo, es investigar las implicaciones funcionales de estas variantes. En cuanto a las mutaciones reportadas: K1449*, P1361L, Q1367*, Q1367H, Q1378*, S1362F, S1434I y R1450, solo la última variante presenta anotación en el NCBI -rs121913332-, asociada a poliposis múltiple familiar (Mori \textit{et al.}, 1993); las demás tampoco fueron encontradas en los datos del “The Cancer Genome Atlas”, en donde se reportan otras variantes somáticas, disponibles en: https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/.

Como era de esperarse, se encontró que algunos genes supresores tumorales, como el TP53, presentaran un porcentaje alto de mutaciones, aunque no se esperaba que fuera el más alto; sin embargo, también hay un incremento de los reportes de mutaciones en TP53 en COSMIC. (Dallol \textit{et al.}, 2016; Forbes \textit{et al.}, 2015). Se deben realizar estudios de supervivencia en este tipo de series, ya que la presencia / ausencia de mutaciones en genes como KRAS y TP53, puede servir como herramienta pronóstica, y podría ayudar a tomar decisiones terapéuticas con el fin de ofrecer mejor sobrevida a los pacientes. (Schell \textit{et al.}, 2016).

Al igual que en otros estudios, el patrón heterogéneo de las mutaciones en los tumores del presente estudio, no sigue exactamente la secuencia de la tumorigénesis colorrectal, por lo que se sugiere la presencia de vías genéticas alternativas. Se podría especular señalando que el modelo genético universalmente aceptado no es representativo de la mayoría de los casos de CCR (Malhotra \textit{et al.}, 2013); los diferentes estudios apuntan a que las mutaciones en los estados iniciales del tumor son APC, KRAS y FBWX7, las cuales determinan en cierto modo la acumulación de mutaciones posteriores en el tumor y en sus subclones. (Uchi \textit{et al.}, 2016). Los datos obtenidos en nuestro estudio muestran que las mutaciones en los genes APC, KRAS y TP53 se encuentran relacionadas como eventos básicos en los cambios genéticos; sin embargo, quedan por explorar otros
genes relacionados, algunos eventos epigenéticos y la heterogeneidad intratumoral, para terminar de construir un árbol oncogénico que permita establecer las relaciones entre los diferentes eventos mutacionales. El perfil mutacional diverso, comparando poblaciones a nivel mundial, obliga a correlacionar estos resultados con otras variables que puedan estar involucradas en esta diversidad, como los aspectos de ancestría genética, los medioambientales (estilo de vida, microbiota gastrointestinal, entre otros), el estado metastásico, etc. (Loes et al., 2016; Olivier, Hollstein, & Hainaut, 2010). Se puede plantear un panel diagnóstico con estas mutaciones para implementar en lesiones precancerosas que puedan ser detectadas, por ejemplo, en heces, como lo plantean varios autores (Schneider et al., 2010), ya sea mediante el uso de pruebas bioquímicas basadas en el ácido alfa-guaiaconico o mediante pruebas inmunooquímicas fecales. (Hadjipetrou, Anyfantakis, Galanakis, Kastanakis, & Kastanakis, 2017).

4.3.4. Análisis de genes – metodología Ion Torrent

En las últimas décadas, la secuenciación de siguiente generación ha sido implementada con el fin de determinar el perfil mutacional en pacientes con variados padecimientos, entre ellos el cáncer, en desarrollo del cual se involucran múltiples genes y sus mutaciones. Los diferentes tipos de mutación detectados en los especímenes del tumor, algunos de mutaciones principales o controladoras y otros de pasajeras o secundarias, podrían servir como blancos para la terapia personalizada. (Armengol et al., 2016; Ashktorab, Azimi, et al., 2016). Las variantes de nucleótido único “Single nucleotides variants (SNVs)”, juegan un papel importante en la predisposición, iniciación y desarrollo del CCR. (Ashktorab, Varma, & Brim, 2015; Valle, 2014). Puede no ser necesario secuenciar el genoma completo para identificar las alteraciones genéticas en las vías y en los genes asociados a la enfermedad (Vakiani, 2017), dado que más del 85% de las mutaciones patogénicas se han encontrado dentro de las regiones del genoma que codifican proteínas. (Ng et al., 2009).

La plataforma de NGS que se usó para los tejidos frescos fue la Ion Torrent, basada en la detección de iones de hidrógeno, que son liberados durante la polimerización del ADN. Los resultados de este tipo de metodología en tejido fresco muestran un mayor rendimiento en la
detección de SNVs, si se comparan con los obtenidos del tejido incluido en parafina FFPE. (Ashktorab, Azimi, et al., 2016). Los resultados obtenidos en la serie de pacientes colombianos se ajustan con este rendimiento. De las 38 variantes que cumplían con los requisitos de cobertura, localización exónica, valor de significancia estadística, exclusión de variantes sinónimas, análisis de patogenicidad por SIFT y POLYPHENv2, el gen con más variantes encontradas fue el APC, que presentó 13% (5/38). Estos resultados son muy similares a los obtenidos por el análisis en tejido incluido en parafina. Ninguna de las cinco variantes ha sido anotada ni en COSMIC ni en el NCBI. En cuanto al análisis de patogenicidad in silico, algunas aparecen como probablemente patogénicas. Aunque las mutaciones en APC no muestran un significado pronóstico, se encuentran reportes de casos en los cuales asocian a pacientes con CCR APC silvestre y estabilidad microsatelital MSS con pronósticos desfavorables. (Jorissen et al., 2015). Las mutaciones en TP53, 8% (3/38), presentan dos anotaciones en el NCBI y evidencia de patogenicidad; las mutaciones en TP53 presentaron relevancia en esta serie de pacientes. Cada vez se encuentran más reportes en los cuales este tipo de mutaciones se muestran con potencial de blanco terapéutico. (Bykov & Wiman, 2014). Los genes KRAS y PICK3CA presentan cada uno dos anotaciones patogénicas 5% (2/38,) en el NCBI. No se encontraron mutaciones en EGFR, que junto con KRAS son los más frecuentes blancos terapéuticos usados en la actualidad en pacientes con CCR y enfermedad avanzada. (Lo Nigro et al., 2016; Zhai et al., 2016).
En relación con las características del CCR esporádico, los resultados del estudio son los siguientes:

- El promedio de edad de los pacientes colombianos con CCR (57,4 años) es aproximadamente 10 años menos, que en los países desarrollados.
- La muestra del estudio está constituida por una serie de pacientes colombianos, en la cual la frecuencia de CCR en mujeres es más alta que hombres.
- Ser menor de 50 años y tener antecedentes de cáncer, se asocia con un riesgo de padecer la enfermedad 1,85 veces mayor que el de la población en general, y si se tienen adenomas y antecedentes familiares esta asociación aumenta hasta 3,22.
- En los pacientes menores de 50 años la localización más frecuente del CCR es en el recto (31,1%) p=0,002, con tipos histológicos agresivos (mucinoso, anillo de sello) p=<0.000 y el diagnóstico en estados avanzados de la enfermedad T3-T4 (75,1%) p=0,022.
- Los casos de CCR de inicio temprano (menores de 50 años) se presentaron en un porcentaje mayor al esperado, 26,5%, asociados a los tipos histológicos biológicamente agresivos, los cuales, a su vez, están asociados a inestabilidad microsatelital (MSI-H).
- Las pruebas moleculares en tejido fresco ofrecen un rendimiento con amplificaciones cercanas al 100%, mientras que dicho rendimiento en tejido incluido en parafina es del 70%.
- La alta sensibilidad del análisis inmunohistoquímico de MLH1 para la detección de tumores MSI+ (71%) ofrece una oportunidad
de implementar estas técnicas en países en vías en desarrollo, con el fin de realizar tamizaje molecular en pacientes con sospecha de síndrome de Lynch.

- Los pacientes con el fenotipo CCR – MSS, presentan subtipos moleculares con mutaciones en los genes $TP53$ (63,4%), $KRAS$ (23,9%) y APC (40,3%), lo cual sugiere que, al menos en parte, siguen la vía molecular tradicional en la formación del CCR.

- Los pacientes con el perfil MSI+ y $BRAF$ V600E se asocian con CCR de tipo esporádico.

- Los resultados de este estudio aportan información clínico-patológica y genética de la población colombiana, evidenciando un patrón de mutaciones en los genes examinados, con frecuencias disimiles para $TP53$ y APC y, comparables para $KRAS$ y $BRAF$.

- En el presente estudio no hay evidencia de una importante copresencia de mutaciones en los genes examinados, que se cree desempeñan un papel fundamental en la progresión del CCR. Las mutaciones $KRAS$, APC y $TP53$ están presentes aproximadamente en tres cuartas partes de de los pacientes del estudio, por lo tanto, en el cuarto restante no quedan completamente definidos los mecanismos moleculares que protagonizan la transformación celular ni la progresión tumoral.

- Este 25% de los pacientes con CCR, triple negativos para mutaciones en $KRAS$, APC y $TP53$, necesita que se indagu en otras vías carcinogénicas.

- La secuenciación de siguiente generación permite detectar mutaciones no sinónimas, múltiples, por tumor, en pacientes con CCR (el 66% en esta serie) y examina una mayor cantidad de genes, lo cual permitió detectar mutaciones en APC (12%) y variantes nuevas en diferentes genes.

- Las variantes nuevas encontradas en este estudio se presentaron con mayor frecuencia en el gen APC, seguidas de las del gen $TP53$, las cuales deben ser sometidas a estudios funcionales.
PERSPECTIVAS Y RECOMENDACIONES
En este estudio, la alta proporción de CCR en personas menores de 50 años (27%) puede corresponder a un síndrome algo diferente de "CCR de inicio temprano". Se recomienda realizar estudios epidemiológicos y de supervivencia para comprobarlo, ya que estos permitirían obtener una visión integrada de las alteraciones moleculares, las asociaciones de las mismas con el fenotipo de la enfermedad, sus consecuencias en la progresión tumoral, una mejor comprensión de la fisiopatología del CCR y la identificación de nuevas dianas terapéuticas, que darían lugar a un tratamiento más individualizado del paciente, en este caso, de acuerdo con la edad de inicio.

Se recomienda institucionalizar nuevos registros poblacionales de cáncer, ya que los mismos contribuyen, de manera importante, al control de la enfermedad, mediante la medición de la carga de la misma. Además, permiten acceder a información completa y confiable, que posibilita realizar estudios epidemiológicos para determinar los factores etiológicos que contribuyen a la incidencia del CCR en Colombia, especialmente en personas menores de 50 años. En este sentido, el grupo de Citogenética, Filogenia y Evolución de Poblaciones está dando sus primeros pasos, de la mano del Instituto Nacional de Cancerología.

Se deben incluir dentro de los programas de tamizaje pruebas moleculares para CCR germinal.

En este momento, en la mayoría de instituciones en el país, a los pacientes con CCR que son sometidos a resección colónica, se les determina el pronóstico y manejo de la enfermedad, basándose exclusivamente en el estado TNM, siendo evidente que hay una marcada variabilidad en los resultados de los mismos, con altas tasas de mortalidad. En consecuencia, se deben implementar clasificadores de pronóstico, con marcadores moleculares de fácil aplicación clínica y evidencia sustentada, que, sin
duda, aportarán a la toma de decisiones clínicas y, por lo tanto, mejorarán el pronóstico de los pacientes.

En concordancia con lo anterior, se recomienda:

Ampliar el muestreo de pacientes con CCR a otras zonas del país, con el fin de comparar los resultados clínicos y moleculares.

Continuar con los bancos de tejido fresco, de tejido tumoral y de tejido normal para análisis molecular, los cuales, con la evidencia actual, permiten obtener mejor rendimiento en las técnicas moleculares.

Ampliar el análisis molecular en pacientes con CCR, para indagar variantes epigenéticas y los posibles fenotipos metilados, con el fin de dilucidar las vías carcinogénicas comprometidas con el inicio y con la progresión de la enfermedad.

Correlacionar el estatus mutacional de muestras más amplias de CCR con estudios de sobrevida y respuesta a medicamentos, sobre todo en la enfermedad metastásica.

Realizar un estudio histopatológico de las diferentes variables de mal pronóstico (tamaño, angioinvasión, invasión vascular linfática, invasión perineural, pobre diferenciación, compromiso ganglionar, reacción linfocítica), relacionándolas en asociación con estudios de sobrevida.

Implementar dentro de los programas estatales de promoción y prevención del CCR, las pruebas IHC y MSI, en relación con la identificación de las familias portadoras de alelos de alto riesgo para cáncer con agregación familiar, con lo cual no sólo se establecerá la verdadera sensibilidad, especificidad y valor predictivo positivo o negativo de la prueba, sino que, además, se logrará una notable mejora en estos programas.
REFERENCIAS
BIBLIOGRÁFICAS

10.1097/PAI.0b013e3182849808

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Referencias bibliográficas

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Referencias bibliográficas

Referencias bibliográficas

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia.

Referencias bibliográficas

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Referencias bibliográficas

R., Devita V; Lawrence T; Rosenberg S; Depinho R; Weinberg. (2011). Principles and Practice of Oncology.

Schneider, M., Scholtka, B., Gottschalk, U., Faiss, S., Schatz, D., Berghof-Jager, K., & Steinberg, P. (2010). Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC,
Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

Referencias bibliográficas

Perfil molecular y epidemiología del carcinoma colorrectal esporádico en Colombia

ANEXOS
Anexo 1.
Abreviaturas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>American Cancer Society</td>
</tr>
<tr>
<td>ADN</td>
<td>Ácido desoxirribonucleico.</td>
</tr>
<tr>
<td>AFAP</td>
<td>Attenuated familial adenomatous polyposis - Poliposis familiar atenuada</td>
</tr>
<tr>
<td>AJCC</td>
<td>American Joint Committee on Cancer</td>
</tr>
<tr>
<td>APC</td>
<td>Adenomatous polyposis coli (APC). APC GENE; APC(MIM611731)</td>
</tr>
<tr>
<td>ARNm</td>
<td>Ácido ribonucleico – mensajero</td>
</tr>
<tr>
<td>ASGE</td>
<td>American Society for Gastrointestinal Endoscopy</td>
</tr>
<tr>
<td>ASR</td>
<td>Age-standardised rate</td>
</tr>
<tr>
<td>BAX</td>
<td>Gen BCL2-associated X protein (MIM600040)</td>
</tr>
<tr>
<td>VER</td>
<td>Base excision repair - Reparación por escisión de bases</td>
</tr>
<tr>
<td>BMPR1A</td>
<td>Bone morphogenic protein receptor, type IA (BMPR1A), mRNA</td>
</tr>
<tr>
<td>BRAF</td>
<td>V-RAF MURINE SARCOMA VIRAL ONCOGENE HOMOLOG B1; BRAF (MIM164757)</td>
</tr>
<tr>
<td>BRRS</td>
<td>Síndrome Bannayan-Riley-Ruvalcaba</td>
</tr>
<tr>
<td>BTP</td>
<td>Brain-tumor polyposis</td>
</tr>
<tr>
<td>CAP</td>
<td>Colegio americano de patólogos.</td>
</tr>
<tr>
<td>CCR</td>
<td>Carcinoma Colorrectal</td>
</tr>
<tr>
<td>CCS</td>
<td>Síndrome Cronkhite-Canadá</td>
</tr>
<tr>
<td>CD</td>
<td>Enfermedad de Crohn</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Significado</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CDH1</td>
<td>CADHERIN 1; CDH1 MIM(192090)</td>
</tr>
<tr>
<td>CHIBCHA</td>
<td>Genetic study of Common Hereditary Bowel Cancers in Hispania and the Americas</td>
</tr>
<tr>
<td>CIMP</td>
<td>CpG island methylator phenotype - Fenotipo metilador de islas CpG</td>
</tr>
<tr>
<td>CIMP-H</td>
<td>CpG island methylator phenotype high</td>
</tr>
<tr>
<td>CIMP-L</td>
<td>CpG island methylator phenotype low</td>
</tr>
<tr>
<td>CIN</td>
<td>Chromosomal instability - Inestabilidad cromosómica</td>
</tr>
<tr>
<td>COSMIC</td>
<td>Catalogue of somatic mutation un cáncer</td>
</tr>
<tr>
<td>CpG</td>
<td>Island methylator phenotype</td>
</tr>
<tr>
<td>CS</td>
<td>Síndrome de Cowden</td>
</tr>
<tr>
<td>CU</td>
<td>Colitis ulcerativa</td>
</tr>
<tr>
<td>DAB</td>
<td>Tetrahidrocloruro de 3,3´diaminobencidina</td>
</tr>
<tr>
<td>dbSNP</td>
<td>Database SNP-NCBI</td>
</tr>
<tr>
<td>DCC</td>
<td>DELETED IN COLORECTAL CARCINOMA (MIM120470)</td>
</tr>
<tr>
<td>DNMTs</td>
<td>enzimas ADN-metiltransferasas</td>
</tr>
<tr>
<td>E.P.S</td>
<td>Empresas sociales del estado</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ácido aminotetracético</td>
</tr>
<tr>
<td>EGF R</td>
<td>EPIDERMAL GROWTH FACTOR RECEPTOR; EGFR (MIM131550.)</td>
</tr>
<tr>
<td>FAP</td>
<td>Poliposis adenomatosa familiar</td>
</tr>
<tr>
<td>FD</td>
<td>Factor de dilución</td>
</tr>
<tr>
<td>FFPE</td>
<td>Formalin Fixed Paraffin Embedded - Tejido incluido en parafina</td>
</tr>
<tr>
<td>G1, G2, G3</td>
<td>Grado 1, Grado 2, Grado 3.</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosin-trifosfato</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association studies</td>
</tr>
<tr>
<td>H-E</td>
<td>Hematoxilina-Eosina</td>
</tr>
<tr>
<td>HGMD®</td>
<td>The Human Gene Mutation Database</td>
</tr>
<tr>
<td>HMPS</td>
<td>Síndrome de poliposis mixta hereditaria</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditary non-polyposis colorectal cancer Carcinoma colorrectal no polipósico hereditario</td>
</tr>
<tr>
<td>HP</td>
<td>Poliposis hiperplásica</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Significado</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>I.P.S</td>
<td>Instituciones prestadoras de salud</td>
</tr>
<tr>
<td>IARC</td>
<td>International agency for research on cancer - Agencia internacional del cáncer</td>
</tr>
<tr>
<td>ICG-HNPCC</td>
<td>grupo colaborativo internacional de HNPCC</td>
</tr>
<tr>
<td>IGF-1R</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IGV</td>
<td>Integrative genomic viewer</td>
</tr>
<tr>
<td>IHC</td>
<td>Inmunohistoquimica</td>
</tr>
<tr>
<td>IMC</td>
<td>Índice de masa corporal</td>
</tr>
<tr>
<td>INC</td>
<td>Instituto Nacional de Cancerología</td>
</tr>
<tr>
<td>InSIGHT</td>
<td>The International Society for Gastrointestinal Hereditary Tumours Incorporated</td>
</tr>
<tr>
<td>JPS</td>
<td>Síndrome de poliposis juvenil</td>
</tr>
<tr>
<td>K-Da</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KRAS</td>
<td>V-KI-RAS2 KIRSTEN RAT SARCOMA VIRAL ONCOGENE HOMOLOG; KRAS (MIM190070)</td>
</tr>
<tr>
<td>LF</td>
<td>Síndrome de Li-Fraumeni</td>
</tr>
<tr>
<td>LOH</td>
<td>Loss of heterozygosity - pérdida de heterosigocidad</td>
</tr>
<tr>
<td>LOVD</td>
<td>Leiden Open Variation Database</td>
</tr>
<tr>
<td>M</td>
<td>Metástasis a órganos distantes</td>
</tr>
<tr>
<td>MAP</td>
<td>Poliposis asociada al gen MUTYH</td>
</tr>
<tr>
<td>MCR</td>
<td>mutation cluster region – APC</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Heading</td>
</tr>
<tr>
<td>MGMT</td>
<td>METHYLGUANINE-DNA METHYLTRANSFERASE; MGMT</td>
</tr>
<tr>
<td>MIM</td>
<td>Número en el catálogo de un gen o carácter mendeliano en la base de datos OMIM</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitro</td>
</tr>
<tr>
<td>MLH1</td>
<td>MutL, E. COLI, HOMOLOG OF, 1; MLH1(MIM120436)</td>
</tr>
<tr>
<td>MLH3</td>
<td>MutL, E. COLI, HOMOLOG OF, 3; MLH3(MIM604395)</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatch repair</td>
</tr>
<tr>
<td>MSH2</td>
<td>MutS, E. COLI, HOMOLOG OF, 2; MSH2(609309)</td>
</tr>
<tr>
<td>MSH6</td>
<td>MutS, E. COLI, HOMOLOG OF, 6; MSH6 (MIM600678)</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Significado</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MSI</td>
<td>Microsatellite instability - inestabilidad microsatelital</td>
</tr>
<tr>
<td>MSI-H</td>
<td>Alta inestabilidad microsatelital</td>
</tr>
<tr>
<td>MSI-L</td>
<td>Baja inestabilidad en los microsatelites</td>
</tr>
<tr>
<td>MSS</td>
<td>Estabilidad microsatelital</td>
</tr>
<tr>
<td>MTS</td>
<td>Síndrome de Muir-Torre</td>
</tr>
<tr>
<td>MUTHY</td>
<td>E. COLI, HOMOLOG OF; MUTYH(MIM604933)</td>
</tr>
<tr>
<td>N</td>
<td>Compromiso de ganglios linfáticos</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NCCN</td>
<td>National Comprehensive Cancer Network Guidelines</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>Ng</td>
<td>Nanogramos</td>
</tr>
<tr>
<td>NGS</td>
<td>Next generation sequencing</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanómetros</td>
</tr>
<tr>
<td>NOS</td>
<td>No especificado</td>
</tr>
<tr>
<td>NRAS</td>
<td>NEUROBLASTOMA RAS VIRAL ONCOGENE HOMOLOG; NRAS (MIM164790)</td>
</tr>
<tr>
<td>OMIM</td>
<td>ON-line Mendelian Inheritance in Man</td>
</tr>
<tr>
<td>OMS</td>
<td>Organización mundial de la salud</td>
</tr>
<tr>
<td>OR</td>
<td>Odd Ratio</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame - Marco Abierto de Lectura</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction - reacción en cadena de la polimerasa.</td>
</tr>
<tr>
<td>PCR-FCE</td>
<td>Fluorescent capillary electrophoresis</td>
</tr>
<tr>
<td>p16INK4a</td>
<td>CYCLIN-DEPENDENT KINASE INHIBITOR 2A; CDKN2A(MIM600160)</td>
</tr>
<tr>
<td>PHTS</td>
<td>Síndrome tumor hamartoma PTEN</td>
</tr>
<tr>
<td>PJS</td>
<td>Síndrome de Peutz-Jeguer</td>
</tr>
<tr>
<td>PMS1</td>
<td>POSTMEIOTIC SEGREGATION INCREASED, S. CEREVISIAE, 1; PMS1(MIM600258)</td>
</tr>
<tr>
<td>PMS2</td>
<td>POSTMEIOTIC SEGREGATION INCREASED, S. CEREVISIAE, 2; PMS2 (MIM600259)</td>
</tr>
<tr>
<td>PNT</td>
<td>Protocolo de normalización de trabajo</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Significado</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>POLD1</td>
<td>POLYMERASE (DNA-DIRECTED), DELTA 1, CATALYTIC SUBUNIT; (MIM174761)</td>
</tr>
<tr>
<td>POLE</td>
<td>POLYMERASE, DNA, EPSILON; POLE (MIM174762)</td>
</tr>
<tr>
<td>PolyPhen-2</td>
<td>Polymorphism Phenotyping v2</td>
</tr>
<tr>
<td>PTEN</td>
<td>PHOSPHATASE AND TENSIN HOMOLOG; PTEN (MIM601728)</td>
</tr>
<tr>
<td>pTNM</td>
<td>pathologic Tumor, Node, Metastasis</td>
</tr>
<tr>
<td>RET</td>
<td>REARRANGED DURING TRANSFECTION PROTOONCOGENE; RET (MIM164761)</td>
</tr>
<tr>
<td>Rpm</td>
<td>revoluciones por minuto</td>
</tr>
<tr>
<td>SIFT</td>
<td>sorts intolerant from tolerant</td>
</tr>
<tr>
<td>SMAD4</td>
<td>MOTHERS AGAINST DECAPENTAPLEGIC, DROSOPHILA, HOMOLOG OF, 4; (MIM600993)</td>
</tr>
<tr>
<td>SNPs</td>
<td>Single nucleotide Polymorphism- polimorfismos de única base</td>
</tr>
<tr>
<td>SNVs</td>
<td>Single nucleotides variants</td>
</tr>
<tr>
<td>STK11(LKB1)</td>
<td>SERINE/THREONINE PROTEIN KINASE 11; (MIM602216)</td>
</tr>
<tr>
<td>Tm</td>
<td>temperatura media</td>
</tr>
<tr>
<td>T</td>
<td>Tamaño del tumor</td>
</tr>
<tr>
<td>TCGA</td>
<td>The Cancer Genome Atlas</td>
</tr>
<tr>
<td>TGF→R</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumor, Node, Metastasis: Tamaño del tumor, Gánglios linfáticos y Metastasis</td>
</tr>
<tr>
<td>TP53</td>
<td>TUMOR PROTEIN p53; (MIM191170)</td>
</tr>
<tr>
<td>UCSC</td>
<td>University of California Santa Cruz</td>
</tr>
<tr>
<td>Ug</td>
<td>Microgramos</td>
</tr>
<tr>
<td>UICC</td>
<td>Unión Internacional Contra Cáncer</td>
</tr>
<tr>
<td>uL</td>
<td>Microlitro</td>
</tr>
<tr>
<td>USMTF</td>
<td>Sociedad multitarea para Estados Unidos</td>
</tr>
<tr>
<td>VPH</td>
<td>virus del Papiloma Humano</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Wnt</td>
<td>wingless-type MMTV integration site family</td>
</tr>
</tbody>
</table>
Anexo 2. Socialización de resultados

<table>
<thead>
<tr>
<th>Título de la ponencias</th>
<th>Nombre del evento</th>
<th>Fecha Presentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic studies of sporadic and familial Colorectal Cancer CRC, in Colombia*</td>
<td>6th Biennal - The International Society for Gastrointestinal Hereditary Tumours (InSiGHT)</td>
<td>Junio 2015. Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Development of low-cost high throughput screening pipeline for detecting germline cancer causing mutations in Hispanic populations Paul Lott, Ruta Sahasrabudhe, Anna Marie Tuazon John Williamson, Ana Estrada, Mabel Bohorquez, Rodrigo Prieto, Angel Criollo, Alejandro Velez, Jorge Castro, Gilbert Mateus, Maria Magdalena Echeverry, Luis Carvajal-Carmona</td>
<td>American Association for Cancer Research (AACR). Annual Meeting</td>
<td>Del 5 al 9 de Abril 2014 en San Diego, Estados Unidos</td>
</tr>
<tr>
<td>COLORECTAL CANCER (CCR) COLOMBIA CHIBCHA WORK PACK 1: Genetic studies of esporadic and familial Colorectal Cancer (CRC) in Colombia. M E Bohorquez Lozano,, M M, Echeverry de Polanco</td>
<td>“IV Reunión del Consorcio CHIBCHA”.</td>
<td>22, 23 y 24 de junio de 2013. Sacramento (California).USA</td>
</tr>
<tr>
<td>Título de la ponencias</td>
<td>Nombre del evento</td>
<td>Fecha Presentación</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Avances del Trabajo doctoral: Estudio genético del Carcinoma Colorrectal esporádico y familiar en Colombia. Presentada por: Mabel Elena Bohórquez</td>
<td>III Seminario Regional de Investigación en Ciencias Biomédicas.</td>
<td>5, 6 y 7 de junio de 2013. Ibagué, Colombia</td>
</tr>
<tr>
<td>Acuerdo en lo fundamental anatomohistopatología. Presentada por Mabel Elena Bohórquez</td>
<td>I Primer Conceso Regional de Cáncer Gástrico y Colorrectal, cirugía y patología.</td>
<td>Junio 1 de 2013, Ibagué, Colombia</td>
</tr>
<tr>
<td>Propuesta Doctoral: Estudio genético del Carcinoma Colorrectal esporádico y familiar en Colombia. Presentada por: Mabel Elena Bohórquez</td>
<td>II Seminario Regional de Investigación en Ciencias Biomédicas.</td>
<td>21, 22 y 23 de noviembre de 2012 Armenia, Colombia</td>
</tr>
<tr>
<td>Genetic studies of esporadic and familial Colorectal Cancer (CRC), in Colombia. Presentada por Mabel Elena Bohórquez</td>
<td>Sao Paulo Advanced School of Comparative Oncology</td>
<td>30 de septiembre al 06 de Octubre de 2012. Sao Paulo, Brasil</td>
</tr>
<tr>
<td>CHIBCHA III. WORK PACK 1. Genetic studies of sporadic and familial Colorectal Cancer (CRC), in Colombia. Presentada por Mabel Elena Bohórquez, MM Echeverry</td>
<td>Reunión anual del consorcio COGENT (COlorectal cancer GENeTics), Tercera reunión del consorcio CHIBCHA (Genetic study of Common Hereditary Bowel Cancers in Hispania and the Americas)</td>
<td>19 al 24 de marzo 2012 Madrid, España</td>
</tr>
<tr>
<td>Estudio Genético del Carcinoma Colo – Rectal (CCR), esporádico y familiar en Colombia I Presentada por MM Echeverry y Mabel Bohórquez</td>
<td>I Seminario Regional de Investigación en Ciencias Biomédicas.</td>
<td>Junio 2012. Manizales, Colombia</td>
</tr>
<tr>
<td>Plans and progress for collecting blood and tumour samples. Presentado por Mabel Bohórquez, MM Echeverry</td>
<td>Primer reunión del consorcio CHIBCHA Genetic study of Common Hereditary Bowel Cancers in Hispania and the Americas (CHIBCHA)</td>
<td>2010. OXFORD, Inglaterra</td>
</tr>
</tbody>
</table>